# Study of the growth ratio of genetic communities using a new meshless method

Document Type : Original Paper

Authors

Department of Mathematics, Faculty of sciences, University of Zanjan, Zanjan, Iran

Abstract

‎In recent decades researchers introduced many numerical methods for solving partial differential equations. Some of these methods have limitations in solving problems with complex domains because of the need to construct meshes. Therefore, scientists developed a new set of numerical methods called meshless methods. In this paper, we introduce the direct meshless local Petrov-Galerkin method to the numerical study of the nonlinear two-dimensional Fisher equation. This method is based on the local weak form of the equation and uses the generalized moving least square method to approximate the unknown function. To show the efficiency and capability of the method, we report the numerical results in regular and irregular domains with a uniform and scattered distribution of nodes. Comparison of the obtained results with other methods indicates the accuracy and efficiency of this method.

Keywords

Main Subjects

#### References

[1] ع. شکری، ع. بهمنی حل عددی معادله تلگراف دو بعدی با استفاده از روش پترو-گالرکین موضعی بدون شبکه بندی مستقیم ، مجله مدلسازی پیشرفته ریاضی، سال 1399، دوره 10، شماره 2، ص 267-287.
[2] S. N. Atluri, S. Shen. The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, 2002.
[3] S. N. Atluri, S. Shen. The meshless local Petrov-Galerkin (MLPG) method: A simple and less costly alternative to the finite element and boundary element methods. Computer Modeling in Engineering and Sciences, 3(1) (2002) 11-52.
[4] E. Bahmani, A. Shokri Numerical study of the unsteady 2D coupled magneto-hydrodynamic equations on regular/irregular pipe using direct meshless local Petrov–Galerkin method. App Math and Comput 417 (2022) 126769.
[5] M. Darani, Direct meshless local Petrov–Galerkin method for the two-dimensional Klein-Gordon equation. Eng. Anal. Bound. Elem, 74 (2017) 1–13.
[6] R.A. Fisher, The wave of advance of advantageous genes. J Math Phys, 10 (1969) 1862–1868.
[7] C. José, Diffusion in nonlinear multiplicative media. Ann Eugen, 7(4) (1937) 355–369.
[8] A. Kolmogorov, N. Petrovsky, S. Piscounov Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull Univ Moskou, 1 (1937) 1–25.
[9] JE. Macias-Diaz, A bounded finite-difference discretization of a two-dimensional diffusion equation with logistic nonlinear reaction. Int J Mod Phys C 22(09) (2011) 953–966.
[10] D. Mirzaei, R. Schaback, M. Dehghan, On generalized moving least squares and diffuse derivatives. IMA Journal of Numerical Analysis, 32 (2012) 983–1000.
[11] D. Mirzaei, R. Schaback, Direct meshless local Petrov-Galerkin (DMLPG) method: A generalized MLS approximation. Applied Numerical Mathematics, 68 (2013) 73–82.
[12] D. Mirzaei, Error bounds for GMLS derivatives approximations of Sobolev functions. J. Comput.
Appl. Math, 294 (2016) 93–101.
[13] O. Oruç . An efficient wavelet collocation method for nonlinear two‑space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two‑space dimensional extended Fisher–Kolmogorov equation. Engineering with Computers , https://doi.org/10.1007/s00366-019-00734-z.
[14] B.G. Pachpatte, Inequalities for differential and integral equations. San Diego: Academic Press, (1998), ISBN: 9780080534640.
[15] K. Parand, M. Nikarya, A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2017-11787-x.
[16] W. Qin, D. Ding, X. Ding, Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation. Appl Math Comput. 252 (2015) 552–567.
[17] J. Roessler, H. Hüssner Numerical solution of the 1+2 dimensional Fisher’s equation by finite elements and the Galerkin method. Math Comput Modell. 25 (1997) 57–67.
[18] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23th National Conference ACM, (1968) 517-523.
[19] A. Shokri, E. Bahmani, A study of nonlinear systems arising in the physics of liquid crystals, using MLPG and DMLPG methods. Mathematics and Computers in Simulation 187 (2021) 261–281.
[20] A. Shokri, E. Bahmani, Direct Meshless Local Petrov–Galerkin (DMLPG) method for 2D complex Ginzburg-Landau equation. Eng. Anal. Bound. Elem. 100 (2019) 195–203.
[21] S. Tang, S. Qin, RO. Weber, Numerical studies on 2-dimensional reaction–diffusion equations. J Aust Math Soc Sen B. 35 (1993) 223–243.
[22] S. Zheng, Nonlinear evolution equations. Monographs and surveys in pure and applied mathematics. Chapman and Hall/CRC, CRC Press, Boca Raton. (2004)
[23] W. Qin, D. Ding, X. Ding, Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation. Applied Mathematics and Computation. 252 (2015) 552–567.
[24] M. El-Hachem, S. W. McCue, W. Jin, Y. Du and M. J. Simpson, Revisiting the Fisher–Kolmogorov–Petrovsky–Piskunov equation to interpret the spreading–extinction dichotomy, Proc. R. Soc. A.475: 20190378 http://doi.org/10.1098/rspa.2019.0378

### History

• Receive Date: 20 February 2022
• Revise Date: 10 January 2023
• Accept Date: 10 January 2023