Optimal scheme in Type II hybrid censoring of Pareto distribution based on cost function criterion

Document Type : Original Paper

Authors

1 Department of Mathematics and Applications, Faculty of Basic Sciences, Kosar University of Bojnord, Bojnord, Iran

2 Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran

Abstract

‎A hybrid censoring is a mixture of Type I and Type II censoring schemes‎, ‎which is divided into Type I and Type II hybrid censoring according to the criteria for terminating the test‎. ‎In this article‎, ‎considering Type II hybrid censoring scheme of Pareto distribution‎, ‎the optimal censoring scheme is determined‎. ‎To determine the optimal censoring scheme‎, ‎various factors can be considered‎, ‎the most important of which is the sampling cost criterion‎. ‎Therefore‎, ‎the optimal censoring scheme is determined so that the total cost of the test does not exceed a predetermined value‎. ‎To evaluate the obtained results‎, ‎numerical computations have been performed‎. ‎A real example is also expressed. Finally‎, ‎the conclusion of the article is presented‎.

Keywords

Main Subjects


[1]  ا. بصیری، اندازه نمونه و طرح بهینه در سانسور فزاینده نوع دو براساس معیار اطلاع فیشر در توزیع پارتو، مجله اندیشه آماری، 24 (2) (1398) 25-35.
[2] ا. بصیری، تعیین طرح بهینه در سانسور هیبرید نوع اول از توزیع بر نوع دوازده براساس تابع هزینه، نشریه علمی پژوهشی مهندسی و مدیریت کیفیت، 11 (2) (1400) 191-202.
[3] ا. بصیری، بهینه سازی اندازه نمونه تصادفی در سانسور فزاینده نوع دو برمبنای معیار هزینه، پژوهش های ریاضی، 8 (2) (1401) 49-64.
[4] ا. بصیری، س. بیگی، طرح بهینه در سانسور فزاینده نوع دو با برداشت های دوجمله ای از توزیع رایلی براساس پیش بینی دونمونه ای بیزی  و تابع هزینه، مجله مدل سازی پیشرفته ریاضی، 10 (1) (1399)  135-157.
[5] ا. بصیری،س.م. صالحی، اندازه نمونه بهینه براساستابع هزینه در مدل سانسور فزاینده نوع دو، علوم آماری، 14  (1) (1399)  41-54.
[6] B.C. Arnold, Pareto Distributions, CRC press, Boca Raton, London and New York, 2015.
[7] E. Basiri, Optimal Number of Failures in Type II Censoring for Rayleigh Distribution, Journal of Applied Research on Industrial Engineering, 4(1) (2017), 67-74.
[8] R. Bhattacharya, B. Pradhan and A. Dewanji, Optimum life testing plans in presence of hybrid censoring: a cost function approach, Applied Stochastic Models in Business and Industry, 30(5) (2014), 519-528.
[9] R. Bhattacharya, B. Pradhan and A. Dewanji, On optimum life-testing plans under Type-II progressive censoring scheme using variable neighborhood search algorithm, Test, 25(2) (2016), 309-330.
[10] R. Bhattacharya, B.N. Saha, G.G Farías and N. Balakrishnan, Multi-criteria-based optimal lifetesting plans under hybrid censoring scheme, Test, 29(2) (2020), 430-453.
[11] M. Burkschat, E. Cramer and U. Kamps, On optimal schemes in progressive censoring, Statistics and probability letters, 76(10) (2006), 1032-1036.
[12] M. Burkschat, E. Cramer and U. Kamps, Linear estimation of location and scale parameters based on generalized order statistics from generalized Pareto distributions, Recent Developments in Ordered Random Variables, (2007), 253 -261.
[13] M. Burkschat, E. Cramer and U. Kamps, Optimality criteria and optimal schemes in progressive censoring. Communications in Statistics-Theory and Methods, 36(7) (2007), 1419-1431.
[14] A. Childs, B. Chandrasekar, N. Balakrishnan and D. Kundu, Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55(2) (2003), 319-330.
[15] J.B. Cordeiro and H. Pham, Optimal Design of Life Testing Cost Model for Type-II Censoring Weibull Distribution Lifetime Units with Respect to Unknown Parameters, International Journal of System Assurance Engineering and Management, 8 (2017), 28-32.
[16] M. Crowder, Tests for a family of survival models based on extremes. In Recent Advances in Reliability Theory (pp. 307-321). Birkhäuser, Boston, MA, 2000.
[17] H.A. David and H.N. Nagaraja, Order Statistics, 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2003.
[18] N. Ebrahimi, Determining the sample size for a hybrid life test based on the cost function, Naval Research Logistics (NRL), 35(1) (1988), 63-72.
[19] B. Epstein, Truncated life tests in the exponential case, The Annals of Mathematical Statistics, 25 (3) (1954), 555-564.
[20] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, volume 2 (Vol.
289), John wiley & Sons, 1995.
[21] V. Pareto, Cours d’Economie Politique, volume 2, F. Rouge, Lausanne, 1897.
[22] H. Pham, Optimal design of life testing for ULSI Circuit Manufacturing, IEEE transactions on semiconductor manufacturing, 5 (1992), 68-70.
[23] H. Pham and X. Zhang, A software cost model with warranty and risk costs, IEEE Transactions on Computers, 48 (1999), 71-75.
[24] B. Pradhan and D. Kundu, Inference and optimal censoring schemes for progressively censored Birnbaum-Saunders distribution, Journal of Statistical Planning and Inference, 143(6) (2013), 1098-1108.
[25] W. Volterman, F.K. Davies and N. Balakrishnan Pitman closeness as a criterion for the determination of the optimal progressive censoring scheme, Statistical Methodology, 9(6) (2012), 563-572.