[1] A. Soltani Joujehi, M.H. Derakhshan and H.R. Marasi, An efficient hybrid numerical method for multi-term time fractional partial differential equations in fluid mechanics with convergence and error analysis, Communications in Nonlinear Science and Numerical Simulation, 106620, (2022).
[2] H.R. Marasi and M.H. Derakhshan, Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis, Computational and Applied Mathematics, 41(3) (2022) 1–19.
[3] H.R. Marasi, N. Sharifi and H. Piri, Modified differential transform method for singular Lane-Emden equations in integer and fractional order, TWMS J. App. Eng. Math., 5(1) (2015) 124–131.
[4] R.P. Agarwal, D.O. Regan and V. Lakshmikanthamr, Quadratic forms and nonlinear nonresonant singular second order boundary value problems of limit circle type, Zeitschrift fur Analysis und ihre Anwendungen, 20(3) (2001) 727–737.
[5] R.P. Agarwal and D.O. Regan, Existence theory for single and multiple solutions to singular positone boundary value problems, J. Diff. Equ., 175(2) (2001) 393–414.
[6] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific: Hackensack, NJ, USA, (2001).
[7] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7(9) (1996) 1461–1477.
[8] R. Almeida, N.R.O. Bastos and M.T.T. Monteiro, Modeling some real phenomena by fractional differential Equations, Mathematical Methods in the Applied Sciences, 39(16) (2016) 4846–4855.
[9] J.S. Duan and M.Y. Xu, The problem for fractional diffusion-wave equations on finite interval and Laplace transform, AppL Meth. J. Chinese Univ. Ser., 19(2) (2004) 165–171, (in Chinese with English abstract).
[10] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 204 (2006).
[11] S.M. Goh, M.S.M. Noorani and I. Hashim, On solving the chaotic Chen system: a new time marching design for the variational iteration method using Adomian’s polynomial, Numer. Algorithms, 54(2) (2010) 245–260.
[12] J.H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178(3–4) (1999) 257–262.
[13] G.K. Zhou, Differential transformation and its applications for electrical circuits, in Chinese, Huarjung University Press: Wuuhahn, China, (1986).
[14] A. Arikoglu and I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Soliton. Fract., 34(5) (2007)1473–1481.
[15] Z. Odibet, S. Momani and V. Erturk, Generalized differential transform method: application todifferential equations of fractional order, Appl. Math. Comput., 197(2) (2008) 467–477.
[16] Z.M. Odibat and N.T. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput., 186(1) (2007) 286–293.
[17] Y. Keskin and G. Oturanc, Reduced differential transform method for partial differential equations, Int. J. Nonlinear Sci. Numer., 10(6) (2009) 741–749.
[18] Y. Keskin and G. Oturanc, The reduced differential transform method: a new approach to fractional partial differential equations, Nonlinear Sci. Lett., 1(2) (2010) 207–217.
[19] G.E. Puklov, Differential transforms of functions and equations, in Russian, Naukova Dumka, Kiev, (1980).
[20] J.K. Zhou, Differential Transfomation and its Application for Electrical Circuits, Huazhong University Press: Wuhan, China, (1986) (in Chinese).
[21] I. Podlubny, Fractional Differential Equations, Mathematics in science and engineering, Academic Press, 198 (1999) 41–119.
[22] F.H. Zeng, J.X. Cao and C.P. Li, Gronwall inequalities, in: C.P. Li, Y.J. Wu, R.S. Ye (Eds.), Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis, World Scientific, Singapore, (2013) 1–22.
[23] C.P. Li and F.H. Zeng, Numerical Methods for Fractional Calculus, CHAPMAN and HALL/CRC Press: Boca Raton, USA, (2015).
[24] P. Lyu and S. Vong, A fast linearized numerical method for nonlinear time-fractional diffusion equations, Numerical Algorithms, 87(1) (2021) 381–408.