[1] K. K. Ali, E. M. Mohamed, K. S. Nisar, M. M. Khashan, M. Zakarya, A collocation approach for multiterm variable-order fractional delay-differential equations using shifted Chebyshev polynomials, Alexandria Engineering Journal. 61 (2022) 3511-3526 .
[2] P. Borisut, P. Kumam, I. Ahmed, K. Sitthithakerngkiet, Nonlinear Caputo fractional derivative with nonlocal riemann-liouville fractional integral condition via fixed point theorems, Symmetry. 11 (2019) 829.
[3] C. Canuto and M. Y. Hussaini and A. Quarteroni and T. A. Zang, Spectral methods: fundamentals in single domains, Springer, 2007.
[4] N. R. Gande, H. Madduri, Higher order numerical schemes for the solution of fractional delay differential equations, Journal of Computational and Applied Mathematics. 402 (2022) 113810.
[5] F. Hartung and M. Pituk, Recent Advances in Delay Differential and Difference Equations, Springer, 2014.
[6] G. Mastroianni, D. Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey, Journal of computational and applied mathematics. 134 (2001) 325-341.
[7] A. K. Mittal, Error analysis and approximation of Jacobi pseudospectral method for the integer and fractional order integro-differential equation, Applied Numerical Mathematics. 171 (2022) 249-268.
[8] P. Nevai, Mean convergence of Lagrange interpolation. III, Transactions of the American Mathematical Society. (1984) 669-698.
[9] N. Peykrayegan, M. Ghovatmand, M. H. Noori Skandari, On the convergence of Jacobi-Gauss collocation method for linear fractional delay differential equations, Mathematical Methods in the Applied Sciences. 44 (2021) 2237-2253.
[10] N. Peykrayegan, M. Ghovatmand, M. H. Skandari, An efficient method for linear fractional delay integro-differential equations, Computational and Applied Mathematics. 40 (2021) 1-33.
[11] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
[12] D. L. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Transactions of the American Mathematical Society. 150 (1970) 41-53.
[13] D. L. Ragozin, Constructive polynomial approximation on spheres and projective spaces, Transactions of the American Mathematical Society. 162 (1971) 157-170.
[14] S. G. Samko and A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives (Vol. 1), Yverdon-les-Bains, Switzerland: Gordon and Breach Science Publishers, Yverdon, 1993.
[15] K. Saoudi, P. Agarwal, P. Kumam, A. Ghanmi, P. Thounthong, The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative, Advances in Difference Equations. 2018 (2018) 1-18.
[16] S. Shahmorad, M. H. Ostadzad, D. Baleanu, A Tau–like numerical method for solving fractional delay integro–differential equations, Applied Numerical Mathematics. 151 (2020) 322-336.
[17] J. Shen and T. Tang and L. L. Wang, Spectral methods: algorithms, analysis and applications (Vol. 41), Springer Science and Business Media, 2011.
[18] M. I. Syam, M. Sharadga, I. Hashim, A numerical method for solving fractional delay differential equations based on the operational matrix method, Chaos, Solitons and Fractals. 147 (2021) 110977.
[19] Y. Wei, Y. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integrodifferential equations with smooth solutions, Advances in Applied Mathematics and Mechanics. 4 (2012) 1-20.
[20] Y. Yang, Y. Chen, Y. Huang, Spectral-collocation method for fractional Fredholm integro-differential equations, Journal of the Korean Mathematical Society. 51 (2014) 203-224.
[21] B. Yuttanan, M. Razzaghi, T. N. Vo, Legendre wavelet method for fractional delay differential equations, Applied Numerical Mathematics. 168 (2021) 127-142.