[1] R.A. Beezer, Sage for linear algebra; A supplement to a first course in linear algebra, Sage web site http://www.sagemath.org. 2011.
[2] W. Bosma and J. Cannon, Handbook of Magma Function, Sydney University Press, Sydney, 1994.
[3] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196–211.
[4] M. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, http://www.math.auckland.ac.nz conder/symmcubic2048list.txt, J (2006).
[5] M. Conder and P. Dobcsanyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002), 41–63.
[6] D.S. Dumit and R.M. Foote, Abstract algebra, 2003.
[7] Y.Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p2, Sci. China Ser. A 49 (2006), 300–319.
[8] Y.Q. Feng, J. H. Kwak and K. Wang, Classifying cubic symmetric graphs of order 8p or 8p2, European J. Combin. 26 (2005), 1033–1052.
[9] Y.Q. Feng, J.H. Kwak and M.Y. Xu, Cubic s-regular graphs of order 2p3, J. Graph Theory 52 (2006), 341–352.
[10] Y.Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory B 94 (2007), 627–646.
[11] A. Gardiner and C.E. Praeger, On 4-valent symmetric graphs, European. J. Combin, 15 (1994), 375–381.
[12] A. Gardiner and C.E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European. J. Combin, 15 (1994), 383–397.
[13] M. Ghasemi, A classification of tetravalent one-regular graphs of order 3p2, Colloq.Math, 128 (2012), 15–24.
[14] M. Ghasemi and J.X. Zhou, Tetravalent s-transitive graphs of order 4p2, Graphs Combin, 29 (2012), 87–97.
[15] J.L. Gross and T.W. Tucker, Generating all graph covering by permutation voltages assignment, Discrete Math. 18 (1977), 273–283.
[16] P.J. Hilton and S. Wylie, Homology theory, an introduction to algebraic topology, cambridge university, 1960.
[17] X.H. Hua, Y.Q. Feng and J. Lee, Pentavalent symmetric graphs of order 2pq, Discrete Math. 311 (2011), 2259–2267.
[18] J.H. Kwak and J.M. Oh, Arc transitive elementary abelian covers of the octahedron graph, Linear algebra and its applications, 429 (2008), 2180–2198.
[19] A. Malnič, Group actions, covering and lifts of automorphisms, Discrete Math. 182 (1998), 203–218.
[20] A. Malnič, D. Marusič, S. Miklavič and P. Potočnik, Semisymmetric elementary abelian covers of the Mobius-Kantor graph, Discrete Math. 307 (2007), 2156–2175.
[21] A. Malnič , D. Marusič and P. Potočnik , Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004), 71–97.
[22] A. Malnič and P. Potočnik, Invariant subspaces, duality, and covers of the Petersen graph, European J. Combin. 27 (2006), 971–989.
[23] W.S. Massey, Algebraic topology: an introduction, 1976.
[24] A.A. Talebi and N. Mehdipoor, Classifying cubic s-regular graphs of orders 22p, 22p2, Algebra Discrete Math. 16 (2013), 293–298.
[25] W.T. Tutte, Connectivity in graphs, Toronto University Press, 1966.