Document Type : Original Paper


1 Department of Mathematics, Kashmar higher education institute, Kashmar, Iran

2 Department of Mathematics, Ferdowsi university of mashhad, Mashhad, Iran


‎In this ‎paper, ‎we ‎investigate ‎the ‎structure ‎of ‎Jordan ‎centrali‎zer ‎maps‎ from a unital ‎alg‎ebra ‎$‎A‎$ ‎into a ‎unital‎ ‎‎$‎A‎$‎-bimodule ‎$‎M‎$‎.‎

We applied our results to triangular algebras. In particular, we prove that every ‎

Jordan centralizer map on a triangular algebra is a centralizer map.

Keywords: Centralizer map, Jordan centralizer map, Triangular algebra.


B.E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, vol. 127, 1972

O.T. Mewomo, Various notions of amenability in Banach algebras, Expositiones Mathematicae 29 (2011) 283–299

V. Runde, Lectures on amenability, Springer-Verlag, Berlin, Heidelberg, 2002.

V. Runde, Amenable Banach algebras, Springer Monographs in Mathematics, Berlin, 2020.


Main Subjects

1. Cheng, W. S. Commuting maps of triangular algebras, J. London Math. Soc. 63 (2001) 117-127.
2. Cheng, W. S. Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003) 299-310.
3. Ghahramani, H. On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc. 38 (2015) 155-164.
4.Liu, L. On Jordan centralizers of triangular algebras, Banach J. Math. Anal. 10 (2) (2016) 223-234.
5.Qi X. F. and Hou, J. G. Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin. 29(7) (2013) 1245-1256.
6. Zalar, B. On centralizers of semiprime rings, Comment. Math. Univ. Carollinae. 32 (1991) 609-614.