[1] E. Babolian, M. Mordad, A numerical method for solving system of linear and nonlinear integral equations of the second kind by hat basis functions, Comput. Math. Appl. 62 (2011) 187-198.
[2] K. Balachandran, K. Murugesan, Analysis of nonlinear singular systems via STWS method, Int. J. Comp. Math. 36 (1990) 9-12.
[3] K. Balachandran, K. Murugesan, Numerical solution of a singular non-linear system from fluid dynamics, Int. J. Comp. Math. 38 (1991) 211-218.
[4] V. Balakumar, M. Murugesan, Single-Term Walsh Series method for systems of linear Volterra integral equations of the second kind, Appl. Math. Comp. 228 (2014) 371-376.
[5] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal. 27(4) (1990) 987-1000.
[6] C. Canuto and M.Y. Hussaini and A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamic, Springer-Verlag, 1987.
[7] R. Chandra Guru Sekar, V. Balakumar, K. Murugesan, Method of Solving Linear System of Volterra Integro-Differential Equations Using the Single Term Walsh Series, International Journal of Applied and Computational Mathematics, 3(2) (2017) 549-559.
[8] R. Chandra Guru Sekar, K. Murugesan, STWS approach for Hammerstein system of nonlinear Volterra integral equations of the second kind, International Journal of Computer Mathematics, 94(9) (2017) 1867–1878.
[9] R. Chandra Guru Sekar, K. Murugesan, System of linear second order Volterra integro-differential equations using Single Term Walsh Series technique, Applied Mathematics and Computation, 273(C) (2016) 484-492.
[10] K.B. Datta and M.M. Bosukonda, Orthogonal functions in systems and control, World scientific publishing Co. Pte. Ltd., 1995.
[11] C.H. Hsiao and C.F. Chen, Solving integral equations via Walsh functions, Comput. Elec. Engng. 6 (1979) 279-292.
[12] F. Mirzaee, Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials, Computational Methods for Differential Equations, 5(2) (2017) 88-102.
[13] A. Pushpam, P. Anandhan, Numerical Solution of Non-linear Fuzzy Differential Equations using Single Term Walsh Series Technique, International Journal of Mathematics Trends and Technology, 45(1) (2017) 35-39.
[14] A. Pushpam, P. Anandhan, Solving Higher Order Linear System of Time-Varying Fuzzy Differential Equations Using Generalized STWS Technique, International Journal of Science and Research, 5(4) (2016) 57-61.
[15] G.P. Rao, K.R. Palanisamy, T. Srinivasan, Extension of computation beyond the limit of normal interval in Walsh series analysis of dinamical systems, IEEE. Trans. Autom. control, 25 (1980) 317-319.
[16] M. Razzaghi, J. Nazarzadeh, Walsh Functions, Wiley Encyclopedia of Electrical and Electronics Engineering, 23(2) (1999) 429-440.
[17] M. Razzaghi, B. Sepehrian, Single-Term Walsh Series Direct Method for the Solution of Nonlinear problems in the Calculus of Variations, Journal of Vibration and Control, 10 (2004) 1071-1081.
[18] A. Saadatmandi, M. Dehghan, A collocation method for solving Able’s integral equations of first and second kinds, Z. Naturforsch. 63a (2008) 752-756.
[19] B. Salehi, L. Torkzadeh, K. Nouri, Chebyshev cardinal wavelets for nonlinear Volterra integral equations of the second kind, Mathematics interdiciplinary Research, 7 (2022) 281-299.
[20] B. Sepehrian, Single-term Walsh series method for solving Volterra’s population model, Int. J. Appl. Math. Reaserch, 3(4) (2014) 458-463.
[21] B. Sepehrian, M. Razzaghi, A new method for Solving nonlinear Volterra-Hammerstein integral equations via single-term Walsh series, Mathematical Analysis and Convex Optimization, 1(2) (2020) 59-70.
[22] B. Sepehrian, M. Razzaghi, Single-term Walsh series method for the Volterra integro-differential equations, Engineering Analysis with Boundary Elements, 28 (2004) 1315-1319.
[23] B. Sepehrian, M. Razzaghi, Solution of nonlinear Volterra-Hammerstein integral equations via single-term Walsh series method, Math. prob. Eng. 5 (2005) 547-554.
[24] H. Zhang, Y. Chen, C. Guo, Z. Fu, Application of radial basis function method for solving nonlinear integral equations, Journal of applied mathematics, J. Appl. Math. (2014). DOI: 10.1155/2014/381908.
[25] H. Zhang, Y. Chen, X. Nie, Solving the linear integral equations based on radial basis function interpolation, J. Appl. Math. (2014), DOI: 10.1155/2014/793582.