[1] Abraham, B., 1981. Missing observations in time series, Communications in StatisticsTheory and Methods, 10 (16), 16431653. doi: 10.1080/03610928108828138
[2] Broomhead,D.and King,G.,1986b.On the qualitative analysis of experimental dynamical systems, Nonlinear Phenomena and Chaos.
[3] Chatfield, C., 2000. TimeSeries Forecasting, Chapman & Hall/CRC.
[4] Commandeur, J. F. and Koopman, S. J. (2007) An Introduction to State Space Time Series Analysis, Oxford University Press Inc, New York.
[5] Golyandina, N. and Zhigljavsky, A., 2013. Singular Spectrum Analysis for Time Series, Springer.
[6] Gomez, V. and Maravall, A., 1994. Estimation, Prediction, and Interpolation for Nonstationary Series with the Kalman Filter, Journal of the American Statistical Association, 89 (426), 611624. doi:
10.1080/01621459.1994.10476786
[7] Harvey, A. C. and Pierse, R. G., 1984. Estimating Missing Observations in Economic Time Series, Journal of the American Statistical Association, 79 (385), 125131. doi:
10.1080/01621459.1984.10477074
[8] Huizan, W., Rein, Z., Wei, L.,Guihua, W. and Baogang, J., 2008. Improved interpolation method
based on singular spectrum analysis iteration and its application to missing data recovery,Applied Mathematics and Mechanics (English Edition), 29, 1351–1361. doi: 10.1007/s104830081010x
[10] Junger, W. L., De Leon, A. P., 2012. mtsdi: Multivariate Time Series Data Imputation. http://CRAN.Rproject.org/package=mtsdi.
[9] Junger, W. L., De Leon, A. P. and Santos, N., 2003. Missing Data Imputation in Multivariate Time
Series via EM Algorithm, Cadernos do IME, 15, 821.
[10] Junger, W. L., De Leon, A. P., 2012. mtsdi: Multivariate Time Series Data Imputation. http://CRAN.Rproject.org/package=mtsdi.
[11] Kalman, R. E., 1960. A new approach to linear filtering and prediction problems, J. of Basic Engineering, 83, 3545. doi: 10.1115/1.3662552
[12] Kalman, R. E. and Bucy, R. S., 1961. New results in linear filtering and prediction theory, J. of Basic Engineering, 83, 95108. doi: 10.1115/1.3658902
[13] Kondrashov, D. and Ghil, M., 2006. Spatiotemporal filling of missing points in geophysical data sets, Nonlinear Processes in Geophysics, 13, 151–159. doi: 10.5194/npg131512006
[14] Ljung, G. M., 1989. A Note on the Estimation of Missing Values in Time Series, Communications in StatisticsSimulation and Computation, 18 (2), 459465. doi: 10.1080/03610918908812770
[15] Mahmoudvand, R. and Rodrigues, P. C., 2016. Missing value imputation in time series using
singular spectrum analysis, International Journal of Energy and Statistics, 4(1), 1650005. doi:
10.1142/S2335680416500058
[16] Moritz, S., 2016. imputeTS: Time Series Missing Value Imputation.
https://CRAN.Rproject. org/package=imputeTS. R package version 1.8. doi: 10.32614/rj2017009
[17] Pena, D., Tiao, G. C. and Tsay, R. S., 2011. A Course in Time Series Analysis, chap. Outliers, Influential Observations and Missing Data, John Wiley & Sons, 136–170. doi: 10.1002/9781118032978.ch6
[18] Pourahmadi, M., 1989. Estimation and Interpolation of missing values of a stationary time series, Journal of Time Series Analysis, 10 (2), 149169. doi: 10.1111/j.14679892.1989.tb00021.x
[19] Rodrigues, P. C. and Carvalho, M. D., 2013. Spectral modeling of time series with missing data,
Applied Mathematical Modelling, 37, 4676–4684. doi: 10.1016/j.apm.2012.09.040
[20] Sanei, S. and Hassani, H., 2016. Singular Spectrum Analysis of Biomedical Signals. Taylor & Francis/CRC.
[21] Shumway, R. H. and Stoffer, D. S., 2011. Time Series Analysis and Application, 3rd ed, Springer, New York.
[22] The Google Flu and Dengue Trends Team, 2015. ‘Google Flu Trends’. URL: http://www.google.org/flutrends
[23] Wu, S. F., Chang, C. Y. and Lee, S. J., 2015. Time Series Forecasting with Missing Values. 1st
International Conference on Industrial Networks and Intelligent Systems (INISCom), 151156. doi:
10.4108/icst.iniscom.2015.258269