[1] Ahmad, B., Ntouyas, S. K. and Assolami, A., 2013. Caputo type fractional differential equations with nonlocal RiemannLiouville integral boundary conditions. Journal of Applied Mathematics and computing, 41, pp. 339-350. doi: 10.1007/s1219001206108
[2] Ahmad, B., Ntouyas, S. K., Tariboon, J. and Alsaedi, A., 2017. Caputo type fractional differential equations with nonlocal RiemannLiouville and ErdelyiKober type integral boundary conditions. Filomat, 31(14), pp.4515-4529. doi: 10.2298/FIL1714515A
[3] Azarnavid, B., Emamjomeh, M. and Nabati, M., 2022. A shooting like method based on the shifted Chebyshev polynomials for solving nonlinear fractional multipoint boundary value problem. Chaos, Solitons & Fractals, 159, p.112-159. doi: 10.1016/j.chaos.2022.112159
[4] Azarnavid, B., 2023. The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integrodifferential equations of fractional order with convergence analysis. Computational and Applied Mathematics, 42(1), p.8. doi: 10.1007/s40314-022-02148-y
[5] Azarnavid, B., Nabati, M., Emamjome, M. and Parand, K., 2019. Imposing various boundary conditions on positive definite kernels. Applied Mathematics and Computation, 361, pp.453-465. doi: 10.1016/j.amc.2019.05.052
[6] Cartea, A. and delCastilloNegrete, D., 2007. Fractional diffusion models of option prices in markets with jumps. Physica A: Statistical Mechanics and its Applications, 374(2), pp.749-763. doi:
10.1016/j.physa.2006.08.071
[7] Kai, D., 2010. The analysis of fractional differential equations: An applicationoriented exposition using differential operators of Caputo type. In Lecture Notes in Mathematics. Springer. doi: 10.1007/9783642145742
[8] Dwivedi, K. D. and GomezAguilar, J. F., 2023. An efficient numerical method to solve ordinary differential equations using Fibonacci neural networks. Computational and Applied Mathematics, 42(1), p.54. doi: 10.1007/s4031402302197x
[9] Esmaeili, M. and Esmaeili, M., 2010. A Fibonaccipolynomial based coding method with error detection and correction. Computers & Mathematics with Applications, 60(10), pp.27382752. doi:
10.1016/j.camwa.2010.08.091
[10] Haq, S. and Ali, I., 2022. Approximate solution of twodimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials. Engineering with Computers, 38(3), pp.2059-2068. doi: 10.1155/2012/106343
[11] Heydari, M., Shivanian, E., Azarnavid, B. and Abbasbandy, S., 2019. An iterative multistep kernel based method for nonlinear Volterra integral and integrodifferential equations of fractional order.
Journal of Computational and Applied Mathematics, 361, pp.97-112. doi: 10.1016/j.cam.2019.04.017
[12] Hosseiny, R.M., Allahviranloo, T., Abbasbandy, S. and Babolian, E., 2022. Reproducing kernel
method to solve nonlocal fractional boundary value problem. Mathematical Sciences, 16(3), pp.261-268. doi: 10.1007/s40096021004180
[13] Khaleghi, M., Moghaddam, M. T., Babolian, E. and Abbasbandy, S., 2018. Solving a class of singular twopoint boundary value problems using new effective reproducing kernel technique. Applied Mathematics and Computation, 331, pp.264-273. doi: 10.1016/j.amc.2018.03.023