روش تکراری هسته بازتولیدی فضای هیلبرت مبتنی بر چند جمله ای های فیبوناچی برای حل معادلات دیفرانسیل کسری غیر خطی با شرایط مرزی انتگرالی کسری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی و علوم کامپیوتر، دانشگاه بناب، بناب، ایران

2 گروه علوم پایه، دانشکده مهندسی نفت آبادان، دانشگاه صنعت نفت، آبادان، ایران

3 گروه علوم پایه، دانشکده فنی و مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، 87717-67498، ایران.

چکیده

در این مقاله به حل معادلات دیفرانسیل کسری غیرخطی با شرایط مرزی انتگرالی کسری می‌پردازیم. به منظور حل مسائل اشاره شده از یک روش تکراری مبتنی بر هسته‌های بازتولیدی فضای هیلبرت استفاده می‌کنیم. در این روش هسته‌های بازتولیدی یک فضای هیلبرت با بعد متناهی، با استفاده از چندجمله‌ای‌های فیبوناچی ساخته می‌شوند. به کمک هسته معین و مثبت به دست آمده پایه‌هایی را تولید می‌کنیم که به صورت دقیق در شرایط مرزی انتگرالی داده شده صدق می‌کنند. پس از آن به کمک پایه‌های به دست آمده ماتریس‌های عملیاتی مشتق کسری ساخته شده و با استفاده از آن‌ها و استفاده از روش تکرار ساده تقریبی از جواب مسأله را به دست می‌آوریم. در واقع تقریبی از جواب در یک فضای با بعد متناهی ساخته می‌شود. هم‌چنین همگرایی روش پیشنهادی را تحت شرایط خاص نشان داده‌ایم. به منظور بررسی کارایی روش، چند مثال را با استفاده از آن حل کرده و نتایج عددی به دست آمده را ارائه داده‌ایم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The iterative reproducing kernel Hilbert space method based on the Fibonacci polynomials for the nonlinear fractional differential equations with fractional integral ‎conditions

نویسندگان [English]

  • Babak Azarnavid 1
  • Mohamad Nabati 2
  • Mahdi Emamjomeh 3
1 Department of Mathematics and Computer Sciences, University of Bonab, Bonab, Iran
2 Department of Basic Sciences, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
3 Basic Sciences Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, 87717-67498, Iran.
چکیده [English]

In this study, we solve the nonlinear fractional differential equations with fractional integral boundary conditions. To solve the mentioned problems, we use an iterative method based on the reproducing kernel Hilbert spaces. In this method, the reproducing kernel of a finite-dimensional Hilbert space is constructed using Fibonacci polynomials. With the help of the obtained positive definite kernel, we produce bases that exactly satisfy the given integral boundary conditions. Then using the obtained bases, we construct fractional derivative operational matrices and obtain an approximation of the problem with the help of a simple iteration method. In fact, we construct an approximation of the solution in a finite-dimensional space. We have also shown the convergence of the method under certain conditions. To show the effectiveness of the proposed method, we have solved some examples, and the obtained results are ‎presented.‎

کلیدواژه‌ها [English]

  • Reproducing kernel Hilbert space
  • Fibonacci polynomials
  • Fractional differential equations
  • Fractional integral boundary conditions
[1] Ahmad, B., Ntouyas, S. K. and Assolami, A., 2013. Caputo type fractional differential equations with nonlocal Riemann­Liouville integral boundary conditions. Journal of Applied Mathematics and computing, 41, pp. 339-­350. doi: 10.1007/s12190­012­0610­8
[2] Ahmad, B., Ntouyas, S. K., Tariboon, J. and Alsaedi, A., 2017. Caputo type fractional differential equations with nonlocal Riemann­Liouville and Erdelyi­Kober type integral boundary conditions. Filomat, 31(14), pp.4515-­4529. doi: 10.2298/FIL1714515A
[3] Azarnavid, B., Emamjomeh, M. and Nabati, M., 2022. A shooting like method based on the shifted Chebyshev polynomials for solving nonlinear fractional multi­point boundary value problem. Chaos, Solitons & Fractals, 159, p.112-159. doi: 10.1016/j.chaos.2022.112159
[4] Azarnavid, B., 2023. The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro­differential equations of fractional order with convergence analysis. Computational and Applied Mathematics, 42(1), p.8. doi: 10.1007/s40314­-022­-02148­-y 
[5] Azarnavid, B., Nabati, M., Emamjome, M. and Parand, K., 2019. Imposing various boundary conditions on positive definite kernels. Applied Mathematics and Computation, 361, pp.453­-465. doi: 10.1016/j.amc.2019.05.052
[6] Cartea, A. and del­Castillo­Negrete, D., 2007. Fractional diffusion models of option prices in markets with jumps. Physica A: Statistical Mechanics and its Applications, 374(2), pp.749-­763. doi:
10.1016/j.physa.2006.08.071
[7] Kai, D., 2010. The analysis of fractional differential equations: An application­oriented exposition using differential operators of Caputo type. In Lecture Notes in Mathematics. Springer. doi: 10.1007/978­3­642­14574­2
[8] Dwivedi, K. D. and Gomez­Aguilar, J. F., 2023. An efficient numerical method to solve ordinary differential equations using Fibonacci neural networks. Computational and Applied Mathematics, 42(1), p.54. doi: 10.1007/s40314­023­02197­x
[9] Esmaeili, M. and Esmaeili, M., 2010. A Fibonacci­polynomial based coding method with error detection and correction. Computers & Mathematics with Applications, 60(10), pp.2738­2752. doi:
10.1016/j.camwa.2010.08.091
[10] Haq, S. and Ali, I., 2022. Approximate solution of two­dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials. Engineering with Computers, 38(3), pp.2059-­2068. doi: 10.1155/2012/106343
[11] Heydari, M., Shivanian, E., Azarnavid, B. and Abbasbandy, S., 2019. An iterative multistep kernel based method for nonlinear Volterra integral and integro­differential equations of fractional order.
Journal of Computational and Applied Mathematics, 361, pp.97­-112. doi: 10.1016/j.cam.2019.04.017
[12] Hosseiny, R.M., Allahviranloo, T., Abbasbandy, S. and Babolian, E., 2022. Reproducing kernel
method to solve non­local fractional boundary value problem. Mathematical Sciences, 16(3),  pp.261­-268. doi: 10.1007/s40096­021­00418­0
[13] Khaleghi, M., Moghaddam, M. T., Babolian, E. and Abbasbandy, S., 2018. Solving a class of singular two­point boundary value problems using new effective reproducing kernel technique. Applied Mathematics and Computation, 331, pp.264­-273. doi: 10.1016/j.amc.2018.03.023