[1] Andersen, P. and Petersen, N.C., 1993. A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), pp.1261-1264. doi: 10.1287/mnsc.39.10.1261
[2] Banker, R.D., Charnes, A. and Cooper, W.W., 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), pp.1078-1092. doi:
10.1287/mnsc.30.9.1078
[3] Cao, L., Ma, Z. and Muren, 2020. Cooperation and competition strategy analysis of decision-making units based on efficiency game. Journal of Systems Science and Systems Engineering, 29, pp.235-248.doi: 10.1007/s11518-019-5417-9
[4] Charnes, A., Cooper, W.W. and Rhodes, E., 1979. Measuring the efficiency of decision-making units.European journal of operational research, 3(4), p.339. doi: 10.1016/0377-2217(79)90229-7
[5] Charnes, A., Cooper, W.W., Golany, B., Seiford, L. and Stutz, J., 1985. Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of econometrics,30(1-2), pp.91-107. doi: 10.1016/0304-4076(85)90133-2
[6] Chen, Y., 2004. Ranking efficient units in DEA. Omega, 32(3), pp.213-219. doi:
10.1016/j.omega.2003.11.001
[7] Chen, Y., 2005. Measuring super-efficiency in DEA in the presence of infeasibility. European journal of operational research, 161(2), pp.545-551. doi: 10.1016/j.ejor.2003.08.060
[8] Davtalab-Olyaie, M., Ghandi, F. and Asgharian, M., 2021. On the spectrum of achievable targets in cross-efficiency evaluation and the associated secondary goal models. Expert Systems with Applications, 177, p.114927. doi: 10.1016/j.eswa.2021.114927
[9] Doyle, J. and Green, R., 1994. Efficiency and cross-efficiency in DEA: Derivations, meanings and
uses. Journal of the operational research society, 45, pp.567-578. doi: 10.1057/jors.1994.84
[10] Du, J., Liang, L., Yang, F., Bi, G.B. and Yu, X.B., 2010. A new DEA‐based method for fully ranking
all decision‐making units. Expert Systems, 27(5), pp.363-373. doi: 10.1111/j.1468-0394.2010.00553.x
[11] Ekiz, M.K. and Tuncer Şakar, C., 2020. A new DEA approach to fully rank DMUs with an application to MBA programs. International Transactions in Operational Research, 27(4), pp.1886-1910. doi:10.1111/itor.12635
[12] Ghiyasi, M., 2019. Full ranking of efficient and inefficient DMUs with the same measure of efficiency in DEA. International Journal of Business Performance and Supply Chain Modelling, 10(3), pp.236-252. doi: 10.1504/IJBPSCM.2019.100848
[13] Hinojosa, M.A., Lozano, S., Borrero, D.V. and Mármol, A.M., 2017. Ranking efficient DMUs using cooperative game theory. Expert Systems with Applications, 80, pp.273-283. doi: 10.1016/j.eswa.2017.03.004
[14] Izadikhah, M. and Farzipoor Saen, R., 2015. A new data envelopment analysis method for ranking decision making units: an application in industrial parks. Expert Systems, 32(5), pp.596-608. doi:10.1111/exsy.12112
[15] Jahanshahloo, G.R., Junior, H.V., Lotfi, F.H. and Akbarian, D., 2007. A new DEA ranking system
based on changing the reference set. European Journal of Operational Research, 181(1), pp.331-337.doi: 10.1016/j.ejor.2006.06.012
[16] Kiaei, H. and Nasseri, S.H., 2018. Allocation of Weights Using Simultaneous Optimization of Inputs and Outputs’ Contribution in Cross-efficiency Evaluation of DEA. Yugoslav Journal of Operations Research, 28(4), pp.521-538. doi: 10.2298/YJOR1710
[17] Li, Y., Xie, J., Wang, M. and Liang, L., 2016. Super efficiency evaluation using a common platform on a cooperative game. European Journal of Operational Research, 255(3), pp.884-892. doi:10.1016/j.ejor.2016.06.001
[18] Lozano, S., Hinojosa, M.A. and Mármol, A.M., 2019. Extending the bargaining approach to DEA target setting. Omega, 85, pp.94-102. doi: /10.1016/j.omega.2018.05.015
[19] Lovell, C.K. and Rouse, A.P.B., 2003. Equivalent standard DEA models to provide superefficiency scores. Journal of the Operational Research Society, 54(1), pp.101-108. doi: 10.1057/palgrave.jors.2601483
[20] Ma, X., Liu, Y., Wei, X., Li, Y., Zheng, M., Li, Y., Cheng, C., Wu, Y., Liu, Z. and Yu, Y., 2017. Measurement and decomposition of energy efficiency of Northeast China—based on super efficiency DEA model and Malmquist index. Environmental Science and Pollution Research, 24, pp.19859-19873. doi:10.1007/s11356-017-9441-3
[21] Mahmoudi, R. and Emrouznejad, A., 2023. A multi-period performance analysis of airlines: A gameSBM-NDEA and Malmquist Index approach. Research in Transportation Business Management, 46,p.100801. doi: 10.1016/j.rtbm.2022.100801
[22] Örkcü, M., Özsoy, V.S. and Örkcü, H.H., 2020. An optimistic-pessimistic DEA model based on game cross efficiency approach.RAIRO-Operations Research, 54(4), pp.1215-1230. doi:
10.1051/ro/2019052
[23] Sexton, T.R., Silkman, R.H. and Hogan, A.J., 1986. Data envelopment analysis: Critique and extensions. New directions for program evaluation, 1986(32), pp.73-105. doi: 10.1002/ev.1441
[24] Ramón, N., Ruiz, J.L. and Sirvent, I., 2020. Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA. Omega, 92, p.102169. doi:
10.1016/j.omega.2019.102169
[25] Tone, K., 2001. A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130(3), pp.498-509. doi: 10.1016/S0377-2217(99)00407-5
[26] Wang, M., Li, L., Dai, Q. and Shi, F., 2021. Resource allocation based on DEA and non- cooperative game. Journal of Systems Science and Complexity, 34(6), pp.2231-2249. doi: 10.1007/s11424-021-0259-1
[27] Wen, Y., An, Q., Hu, J. and Chen, X., 2022. DEA game for internal cooperation between an upperlevel process and multiple lower-level processes. Journal of the Operational Research Society, 73(9), pp.1949-1960. doi: 10.1080/01605682.2021.1967212
[28] Wu, J., Liang, L., Yang, F. and Yan, H., 2009. Bargaining game model in the evaluation of decision making units. Expert Systems with Applications, 36(3), pp.4357-4362. doi:
10.1016/j.eswa.2008.05.001
[29] Xie, Q., Zhang, L.L., Shang, H., Emrouznejad, A. and Li, Y., 2021. Evaluating performance of superefficiency models in ranking efficient decision-making units based on Monte Carlo simulations. Annals of Operations Research, 305, pp.273-323. doi: 10.1007/s10479-021-04148-3
[30] Sojoodi, S., Dastmalchi, L. and Neshat, H., 2021. Efficiency ranking of different types of power plants in Iran using super efficiency method. Energy, 233, p.121104. doi: 10.1016/j.energy.2021.121104
[31] Zhu, Q., Song, M. and Wu, J., 2020. Extended secondary goal approach for common equilibrium efficient frontier selection in DEA with fixed-sum outputs. Computers Industrial Engineering, 144,p.106483. doi: 10.1016/j.cie.2020.106483