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Abstract. The aim of this paper is to numerically solve the Fokker-Planck-Kolmogorov

fractional-time differential equations using the Legendre wavelet. Also, we analyzed the

convergence of function approximation using Legendre wavelets. Introduced the abso-

lute value between the exact answer and the approximate answer obtained by the given

numerical methods, and analyzed the error of the numerical method. This method has

the advantage of being simple to solve. The results revealed that the suggested numer-

ical method is highly accurate and effective. The results for some numerical examples

are documented in table and graph form to elaborate on the efficiency and precision

of the suggested method. The simulation was carried out using MATLAB software.

In this paper and for the first time, the authors presented results on the numerical

simulation for classes of time-fractional differential equations. The authors applied the

reproducing Legendre wavelet method for the numerical solutions of nonlinear Fokker-

Planck-Kolmogorov time-fractional differential equation. The method presented in the

present study can be used by programmers, engineers, and other researchers in this field.
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1. Introduction

Many mathematicians, physicists, and engineers have been interested in differential

calculus and fractional integrals in the last decade because fractional-order differential

equations better describe and model some of the natural physical processes of dynamic

devices than integer-order differential equations. However, after converting natural events

to differential equations and systems, it’s critical to solve these equations and systems,

many of which lack an analytical solution or, if they do, are extremely difficult to lo-

cate. As a result, many numerical methods for solving such equations and devices have

been presented [3, 18, 19]. The present study aimed to discuss the nonlinear-based Fokker-

Planck-Kolmogorov fractional-time differential equations and the wavelet method and the

wavelet operation matrix were used for its solution. In the present study, the fractional

differential equations are reduced to linear differential equations and the approximate so-

lutions of the primary problem are calculated by introducing the Legendre wavelet and

giving the related fractional integral operational matrices. In addition, numerical exam-

ples are offered and the numerical findings are evaluated to highlight the simplicity and

efficiency of the suggested approaches. One of the most significant subjects in numerical

analysis after solving an equation with numerical methods is to analyze the numerical

method’s convergence to the precise answer and its error analysis to solve the problem.

As a result, the convergence of the function approximation is investigated using Legendre

wavelets by giving theorems. The absolute value of the error between the precise solution

and the approximate response generated from the numerical method is then introduced,

and finally, the numerical method’s error is analyzed. In the wavelets, there was a signif-

icant improvement. Orthogonal bases with desirable features may be established and the

difficulties connected to those spaces can be explored by introducing wavelets and their

related properties. An integrated framework and coherent theory for several approaches

and techniques were provided by the wavelet theory that has been presented and devel-

oped sequentially by different scientists in many disciplines [8, 9]. The term ”wavelet”

refers to a small wave. By applying approximate findings, a wavelet as a conversion is

sometimes a tool for showing information, functions, and operators that are better and

more efficient than other converters, such as the Fourier transform. Wavelets are used in

a variety of fields, including data and image compression, transient tracking, geology and
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earthquakes, marine and ocean sciences, noise cancellation, pattern recognition, histoly-

sis, fast computing, etc. [5, 20, 17]. Wavelets and wavelet operating matrices have been

explored by numerous scientists in the field of numerical analysis, and several issues in the

field of numerical solutions related to differential and integral equations have been studied

[10, ?]. Legendre wavelets are defined as a function of the mother wavelet by Legendre

polynomials. Wavelets are utilized in a variety of disciplines and applications, as described

in earlier chapters. The Legendre wavelet, for example, has been applied to the numeri-

cal solution of equations and systems of integral equations [25, 24, 29], initial-boundary

value problems [26], differential equations with partial derivatives [11], differential elliptic

equations derivatives [31, 28], and fractional differential equations in numerical analysis

[1, 4]. In statistical mechanics, the Fokker-Planck equation is a partial differential equa-

tion that accounts for the time evolution of the density probability velocity function for

the particles influenced by drag and random forces. Brownian motion is described by

this equation, which may be extended to include observations expect for velocity [30, 2].

Previous research has suggested a technique for solving two-dimensional Fokker-Planck

equations for non-hybrid continuous systems using the finite difference approach, and the

proposed method’s stability and accuracy have been investigated. Many other articles

are written on the numerical solution of Fokker-Planck equations [23, 27, 7]. Fraction

calculations are now considered by many researchers. Fractional differential equations

are also used in various disciplines such as mechanics, physics, biology and engineering

[6, 21]. Due to the increasing application of this group of equations, special attention has

been paid to the numerical and precise methods of differential equations. Recently, the

use of fractional-order operational matrices to solve fractional-order differential equations

has been developed [15, 22]. Many important physical and mechanical problems lead to

fractional-order differential equations, but in practice a small number of these equations

can be solved analytically and their exact answers obtained. Therefore, we use numer-

ical methods to calculate their approximate answer [16, 13]. Using the Legendre-based

operational matrix method to solve differential equations of time fraction and convert it

into equations that can be solved with mathematical software is one of the advantages of

Legendre wavelet operation method. The biggest advantage of this method is the high

speed of convergence [14, 12]. The Legendre wavelet method is utilized in this study to
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solve the Fokker-Planck-Kolmogorov time-fractional differential equations in the following

way [23]:

(1.1) Dα
t u−

1

2
σ2x2

∂2u

∂x2
+
(
β − 2σ2

)
x
∂u

∂x
+
(
β − σ2

)
u = R (x, t)

Initial conditions:

u (0, x) =f0 (x) , ut (0, x) = f1 (x) , 0 ≤ x ≤ 1

Boundary conditions:

u (t, 0) =g0 (t) , ut (t, 1) = g0 (t) , 0 ≤ t ≤ 1

R(x, t) Is the right side function of the equation, which is given for each equation.

2. Preliminieris

2.1. Riemann-Liouville Integral and fractional derivative. Suppose that n > 0

and fare continuous segments on the interval (α,∞) and are integrable on any finite sub-

interval (α,∞). Then, the fractional Riemann-Liouville Integral f for t>a of order n is

defined as

(2.1) aD−nt f (t) =
1

(n)

∫ t

α

(t− T )n−1f (T ) dT,

Which can also be displayed with the symbols Ina or Jn
a . In addition, if f is continuous

on [a, t], then limn→α D−nt f (t) = f(t). Furthermore, the following equation can be true:

(2.2) aD0
t f (t) = f(t)

When n−m ∈ N , the definition of (1-1) is compatible −m with -fold integral as follows:

aD−mt f (t) =

∫ t

α

dT1

∫ T1

α

dT2 . . .

∫ Tm−1

α

f(Tm)dTm

=
1

(m− 1)!

∫ t

α

(t− T )m−1f (T ) dT m ∈ N
(2.3)

Regarding m ≥ 0 and v > −1, the integral from the defined real order in Equation (2.1)

has the following properties:

(2.4) I.αD
−n
t (t− α)v =

(v + 1)

(n+ v + 1)
(t− α)n+v
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II.αD
−n
t k =

k

(n+ 1)
(t− α)n,

If f(t) for t ≥ a is continuous, then:

(2.5) III.αD
−n
t (αD

−m
t f(t))=αD

−m
t (αD

−n
t f(t)) =αD

−n−m
t f(t)

2.2. Caputo fractional derivative. Caputo defined a derivative operator in 1976 that

differs from previous derivatives in terms of characteristics. The symbol of this operator

is as aD
n
∗ and is defined as

aDn
∗f (t) =

1

(m− n)

∫ t

α

(t− T )m−n−1f (m) (T ) dT (m− 1 < n ≤ m)

= αD
−(m−n)
t f (m) (t) ,

(2.6)

On the conditions that n→ m are exercised on the f function, then the Caputo derivative

transforms to the mth order derivative of the f(t) function. Suppose that 0 ≤ m − 1 <

n < m and function f(t) have m+ 1 continuous bounded derivative in the interval [a, t],

then by partial integration for each t > a per m = 1, 2, . . . , we have:

lim
n→mα

Dn
∗f (t) = lim

n→m

( f(m) (α) (t−α)m−n

(m− n + 1)

∫ t

α

(
t− T)m−nf(m+1) (T) dT

)
= f (m) (α) +

∫ t

α

f (m+1) (T ) dT = f (m) (t) .

(2.7)

3. Research method

3.1. Legendre wavelets and Orthogonal system of block-pulse. In this section, at

first Legendre polynomials are defined on the interval [−1, 1] , then they are translated

to the interval [0, 1] . We define Legendre wavelets based on Legendre polynomials and

finally introduce the operational matrix of Legendre wavelets. Legendre polynomials on

the interval [−1, 1] with the weight function w (t) = 1 are defined, recursively, as follows:

(3.1) L0 (t) = 1,

(3.2) L1 (t) = t,

(3.3) Li (t) =
2i− 1

i
tLi−1 (t)− i− 1

i
Li−2 (t) , i ≥ 2



SOLUTION OF FOKKER-PLANCK-KOLMOGOROV DIFFERENTIAL EQUATIONS 61

According to the Legendre polynomials on the interval [−1, 1], it is possible to translate

Legendre polynomials on the interval [0, 1], by applying changes in a simple variable, and

define them in the following way:

(3.4) L∗i (t) = Li (2t− 1) , i = 0, 1, 2, . . .

A set m is a member of the block-pulse functions on the interval [0.1) is defined as follows:

(3.5) bi (t) =

{
1 i

m
≤ t ≤ i+1

m

0 otherwise

Lemma 3.1. Legendre polynomials are pairwise Orthogonal [3]. That is,

(3.6)

∫ 1

0

L∗i (t)L∗j (t) dt =
1

2i+ 1
=

{
1

2j+1,
i = j,

0 i 6= j.

Legendre wavelets on the interval [0, 1) are defined as follows:

(3.7) ψij (t) =


√

2j+1
2

2
k+1
2 Lj

(
2k+1t− (2j + 1)

)
, i

2k
≤ t < i+1

2k
,

0 , otherwiese

Where k,M ∈ N and j = 0, 1, 2, . . . , M − 1, i = 0, 1, 2, . . . , 2k − 1 hold. Sometimes

the translated Legendre polynomials are used for the purpose of simplification and ease

of calculation, and the Legendre wavelets are defined as follows:

(3.8) ψij (t) =

{
2k/2
√

2j + 1L∗j
(
2kt− i

)
, i

2k
≤ t < i+1

2k
,

0 , otherwiese

Where k,M ∈ N and = 0, 1, 2, . . . , M − 1, i = 0, 1, 2, . . . , 2k − 1.

For k,M ∈ N , insert m = 2kM , and consider the column vector ψm (t) , m×1 as follows:

ψm (t) =
[
ψ00 (t) , ψ01 (t) , . . . , ψ0(M−1) (t) , ψ10 (t) , ψ11 (t) , . . . ,

ψ1(M−1) (t) , . . . , ψ(2k−1)0 (t) , ψ(2k−1)1 (t) , . . . , ψ(2k−1)(M−1)(t)
]

Sometimes we insert n = iM + j + 1 for simplification of expression in indices of the

components of the above vector and rewrite the vector ψm(t) as follows:

ψm (t) =
[
ψ1, ψ2, . . . , ψM , ψM+1, ψM+2, . . . , ψ2M , . . . ,

ψM(2k−1) + 1, . . . , ψM(2k−1) + 2, . . . , ψM
]T(3.9)
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Figure 1. Legendre wavelets diagrams for k = 2 and M = 4

3.2. Operational matrix of Legendre wavelets. The collocation meshless local points

of i = 1, 2 . . . , m, ti for m ∈ N are defined as follows:

(3.10) ti =
2i− 1

2m
, i = 1, 2, . . . , m.

For k,M ∈ N, the operational matrix of Legendre wavelets, is a square and invertible

matrix and of the order m = 2kM that is defined as follows [3].

(3.11) Φm×m= [Ψm (t1) Ψm (t2) Ψm (t3) . . . Ψm (tm)] ,
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For example, when k = 1 and M = 4, the operational matrix of Legendre wavelets Φ8×8

will be

Φ8×8 =



1.4142 1.4142 1.4142 1.4142 0 0 0 0

−1.8371 −0.6124 0.6124 1.8371 0 0 0 0

1.0870 −1.2847 −1.2847 1.0870 0 0 0 0

0.2631 1.2570 −1.2570 −0.2631 0 0 0 0

0 0 0 0 1.4142 1.4142 1.4142 1.4142

0 0 0 0 −1.8371 −0.6124 −0.6124 −0.6124

0 0 0 0 1.0870 −1.2847 −1.2847 1.0870

0 0 0 0 0.2631 1.2570 −1.2570 −0.2631


and for k = 2 and M = 2, the operational matrix of Legendre wavelets Φ8×8 will be

Φ8×8 =



2.0000 2.0000 0 0 0 0 0 0

−1.7321 1.7321 0 0 0 0 0 0

0 0 2.0000 2.0000 0 0 0 0

0 0 −1.7321 1.7321 0 0 0 0

0 0 0 0 0 2.0000 2.0000 0

0 0 0 0 −1.7321 1.7321 0 0

0 0 0 0 0 0 2.0000 2.0000

0 0 0 0 0 0 −1.7321 1.7321


3.3. Operational matrix of Legendre wavelet fractional integration. It is neces-

sary to have some appropriate properties in the multiplication of functions by each other

and the multiplication of corresponding approximations to solve with the non-linear sen-

tences when intending to solve the equation or system of nonlinear fractional differential

equations. Thus, we resort to the properties of block pulse function and their properties

, and use them for this purpose. At first, we expand the vector function of the Legendre

wavelet according to block pulse functions. The vector function of Legendre wavelet (3.6)

can be expanded with the help of the set including m number of the block pulse functions,

as follows:

(3.12) Ψm (t) = Φm×mBm (t) ,

Where: Bm (t) = [b0 (t) , b1 (t) , b2 (t) , . . . , bm−1 (t)]T and bi (t) are block pulse functions .
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Proof. We start from the definition of Ψm (t). According to the definition of the block-

pulse functions, since: ψm (t) =
∑m

i=0 ψn (ti) bi(t), thus we have

ψm (t) =


ψ1 (t)

ψ2 (t)

. . .

ψm (t)

 =



∑m
n=1 ψ1 (tn) bn(t)∑m
i=0 ψm (tn) bn(t)

. . .∑m
n=1 ψm (tn) bn(t)

 =


ψ1 (t1) ψ1 (t1) . . . ψ1 (t1)

ψ1 (t1) ψ1 (t1) . . . ψ1 (t1)

. . . . . . . . . . . .

ψ1 (t1) ψ1 (t1) . . . ψ1 (t1)




b1 (t)

b2 (t)

. . .

bm (t)

 = Φm×mBm (t) .

(3.13) (IaΨm) (t) ≈ P a
m×mψm (t) .

The matrix P a
m×m is called the Operational matrix of Legendre wavelet fractional inte-

gration [3]. we have:

(3.14) (IaΨm) (t) ≈ (IaΦm×mBm) (t) = Φm×m (IaBm) (t) ≈ Φm×mF
aBm (t) .

Now, we have:

(3.15) P a
m×mψm (t) = P a

m×mΦm×mBm (t) = Φm×mF
aBm (t)

Therefore, by inserting constant coefficients for Bm (t) in the above equation, the opera-

tional matrix of Legendre wavelet fractional integration will be obtained as follows

(3.16) P a
m×m = Φm×mF

aΦ−1m×m,

�

3.4. Approximation of functions based on Legendre wavelet. We approximate

the unknown function of the problem according to Legendre wavelets to solve the system

fractional differential equations using Legendre wavelets. In this section, we approxi-

mate an optional function according to Legendre wavelets. Each optional function of

f (t) ∈ L2 [0, 1) can be approximated according to Legendre wavelets. Assume that the

expansion of function f (t) according to the Legendre wavelets are as follows:

(3.17) f (t) =
∞∑
i=0

∞∑
j=0

cijψij (t)

Forj′ ∈ Z≥0, optionali′, both parts of the equation (3.17) should be multiplied by ψi′j′ (t).

then we have

(3.18) ψi′j′ (t) f (t) =
∞∑
i=0

∞∑
j=0

cijψi′j′ (t)ψij (t) .
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By integrating both parts of the above equation on the interval [0, 1), we have∫ 1

0

ψi′j′ (t) f (t)=
∞∑
i=0

∞∑
j=0

cijψi′j′ (t)ψij (t) dt =

=
∞∑
i=0

∞∑
j=0

cij

∫ 1

0

ψi′j′ (t)ψij (t) dt =ci′j

(3.19)

Therefore, the coefficients of cij for i, j = 0, 1, 2, . . . , will be obtained as [3].

(3.20) cij = 〈f (t) , ψij (t)〉 =

∫ 1

0

ψij (t) f (t) dt

Since the calculation of the infinite set is impossible in practice, we approximate it as the

following infinite set:

(3.21) f (t) ≈
2k−1∑
i=0

M−1∑
j=0

cijψij (t) = CTΨ (t) = f̂ (t) .

Where:

(3.22)

C =
[
c00, c01, . . . , c0M−1, c10, c11, . . . , c1M−1, . . . , c(2k−1)0, c(2k−1)1, . . . , c(2k−1)M−1

]T
(3.23)

Ψ (t) =
[
ψ00, ψ01, . . . , ψ0M−1,, ψ10, ψ11, . . . , ψ1M−1, . . . , ψ(2k−1)0, ψ(2k−1)1, . . . , ψ(2k−1)M−1

]T
and m = 2kM . For simplification of expression we place n = iM + j + 1 in the indices

of the above vector, and write vectors C and ψm (t) as follows:

(3.24) C =
[
c1, c2, . . . , cM , cM+1, cM+2, . . . , c2M , . . . , cM(2k−1)+1, cM(2k−1)+2, . . . , cm

]T
(3.25)

Ψ (t) =
[
ψ1, ψ2, . . . , ψM,, ψM+1, ψM+2, . . . , ψ2, . . . , ψM(2k−1)+1, ψM(2k−1)+2, . . . , ψm

]T
.

The function f(x, t) on the interval [0, 1] × [0, 1] can be written using the rabies wavelet

as follows:

(3.26) u (t, x ) =
2k−11∑
i=0

M−1∑
j=0

ψi,j(x)CT
i,jΨ (t)

(3.27) Ci,j = (ci,1,j,0, ci,1j,1, . . . , ci,1j,M−1, . . . , ci,2k−1j,0, ci,2k−1j,1, . . . , ci,2k−1j,M−1)
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(3.28)

Ψ (t) = (ψ1,0 (t) , ψ1,1 (t) , . . . , ψ1,M−1 (t) , . . . , ψ2k−1,0 (t) , ψ2k−1,1 (t) , . . . , ψ2k−1,M−1 (t))T

Sometimes it may be very complicated or impossible to directly integrate a function and

use the equation (3.20). Now, we calculate the coefficients of cij for i, j = 0, 1, 2, . . . , m−
1 with the help of the operational matrix of Legendre wavelets and collocation meshless

local points. For this purpose, we consider vector f̂m as :

(3.29) f̂m =
[
f̂ (t1) , f̂ (t2) , f̂ (t3) , . . . , f̂ (tm)

]
,

Where the values presented by ti for i = 1, 2, . . .,m, are the collocation meshless local

points .

Lemma 3.2. If f̂ (t) is the approximation of the function f (t) introduced in equation

(3.21), then:

(3.30) f̂m = CTΦmm,

Thus, the vector of coefficients of Legendre wavelets in f (t) in the equation (3.21) will be

(3.31) CT = f̂mΦ−1m×m.

Theorem 3.3. According to equation (3.21), we have

f̂ (t) = CTψm (t)(3.32)

= [c1, c2, . . . , cm]


ψ1(t)

ψ2(t)

. . .

ψm(t)

 = c1ψ1 (t) + c2ψ2 (t) + · · ·+ cmψm (t) .(3.33)

Therefore, vector fm will be as follows:

f̂m =
[
f̂ (t1) , f̂ (t2) , f̂ (t3) , . . . , f̂ (tm)

]
=
[
c1ψ1 (t1) + · · ·+ cmψm (t1) , . . . , c1ψ1 (tm) + · · ·+ +cmψm (tm)

]
.

(3.34)
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Furthermore, according to equation (3.11), we have:

CTΦmm = [c1 c1 . . . cm]


ψ1 (t1) ψ1 (t2) . . . ψ1 (tm)

ψ2 (t1) ψ2 (t2) . . . ψ2 (tm)

. . . . . . . . . . . .

ψm (t1) ψm (t2) . . . ψm (tm)


= [c1ψ1 (t1) + · · ·+ cmψm (t1) , . . . , c1ψ1 (tm) + · · ·+ cmψm (tm)] ,

(3.35)

Thus, we conclude from the two equations (3.21) and (3.35) that:

(3.36) f̂m = CTΦmm.

Assume that function f (t) has been approximated according to Legendre wavelets in (3.21),

then according to equation (3.13), the fractional integration of α order of the function will

be calculated as

(Iaf) (t) ≈
(
IaCTψm

)
(t) = CT (Iaψm) (t) ≈ CTP a

m×mψm (t) .

4. The wavelets method for solving differential equations of

Fokker-Planck-Kolmogorov fractional order

For the approximate solution of the Fokker-Planck-Kolmogorov fractional differential

equation, the Legendre wavelet method is explained as follows:

(4.1) Dα
t u−

1

2
σ2x2

∂2u

∂x2
+
(
β−2σ2

)
x
∂u

∂x
+
(
β−σ2

)
u = R (x, t)

Initial conditions:

u (0, x) =f0 (x) , ut (0, x) = f1 (x) , 0 ≤ x ≤ 1

Boundary conditions:

u (t, 0) =g0 (t) , ut (t, 1) = g0 (t) , 0 ≤ t ≤ 1

R(x, t) Is the right-side function of the equation given for each equation. Consider:

(4.2)
∂4u(t, x)

∂x2∂t2
≈ΨT

m×m(x)Cm×mΨ
m×m(t)

By twice integrating with t from both sides of equation (4.2) we have:

(4.3)
∂2u(x, t)

∂x2
≈ f ′′0 (x) + tf

′′

1 (x)+ΨT
m×m(x)Cm

m×m(mI2Ψ
m×mm(t))
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By twice integrating with x from both sides of equation (4.3) we have:

∂u (t, x)

∂x
=
∂u (t, x)

∂x
|x=0 + f ′0 (x) + f ′0 (0) + t (f ′1 (x)−f ′1 (0)) +

(IHT
m×m(x))

T
Ψm×m(I2Ψm×m (t))

(4.4)

u (t, x) ≈ u (t, 0) + x
∂u (t, x)

∂x
|x=0 + (f0 (x)− f0 (0)− x′0 (0)) +

t (f1 (x)− f1 (0)− xf ′1 (0)) + (I2Ψm×m(x))
T
Cm×m(I2Ψm×m (t))

(4.5)

Now by applying the boundary conditions and putting x = 1, we will have:

u (t, 1) ≈ u (t, 0) + x
∂u (t, x)

∂x
|x=0 + (f0 (1)− f0 (0)− xf ′0 (0)) +

t (f1 (1)− f1 (0)− f ′1 (0)) + (I2Ψm×m(1))
T
Cm×m(I2Ψm×m (t))

(4.6)

Therefor:

∂u (t, x)

∂x
|x=0≈ g1 (t)− g0 (t)− (f0 (1)− f0 (0)− f ′0 (0))− t (f1 (1)− f1 (0)− f ′1 (0))

−
(
I2Ψm×m (1)

)T
Cm×m(I2Ψm×m (t)) = K(t)

(4.7)

Now by placing K(t) in Equation (4.5) we have:

u (t, x)≈ g0 (t) + xK (t) + (f0 (x)− f0 (0)− xf ′0 (0)) + t (f1 (x)− f1 (0)− xf ′1 (0))

+
(
I2Ψm×m (x)

)T
Cm×m(I2Ψm×m (t))

(4.8)

Now we need the fraction derivative u(t, x) according to Equation (4.1). From Equation

(4.7) we derive the order fraction α with respect to t:

(4.9) Dα
t u (t, x)≈ Dα

t g0 (t) + xDα
t K (t) +

(
I2Ψm×m (x)

)T
Cm×m(I2−αΨm×m (t))

And we will have:

(4.10) Dα
t K (t) = Dα

t g1 (t)−Dα
t g0 (t)−

(
I2Ψm×m (1)

)T
Cm×m(I2−αΨm×m (t))
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Now convert all approximations (≈) to equals (=), and place equations (4.3), (4.4), (4.8)

and (4.10) in Equation (4.1), the following linear equation is obtained:

Dα
t g0 (tj) + xiD

α
t K (tj) +

(
I2Ψm×m (xi)

)T
Cm×m(I2−αΨm×m (t))− 1

2
σ2xi

2

(f ′′0 (xi) + tjf
′′
1 (xi) + ΨT

m×m (xi)Cm×m(Ψ 2
m×m (tj))) +

(
β − 2σ2

)
xi

(K (tj) + f ′0 (xi)− f ′0 (0) + tj (f ′1 (xi)−f ′1 (0)) + (IΨm×m (xi))
TCm×m(Ψ 2

m×m (tj)))

+
(
β − σ2

)
(g0 (tj) + xiK (tj) + (f0 (xi)− f0 (0)− xif ′0 (0)) + tj

(
f1 (xi)

− f1 (0)− xif ′1 (0)
)

+
(
I2Ψm×m (xi)

)T
Cm×m(I2Ψm×m (tj)) = R (xi, tj)

(4.11)

5. Convergence and error analysis

In this section, we analyzed the convergence of function approximation using Legendre

wavelets by providing some theorems, then we introduced the absolute value between

the exact answer and the approximate answer obtained by the given numerical methods,

and analyzed the error of the numerical method. The following theorem shows that the

function approximation based on Legendre wavelet converges to the function itself, and

also an upper bound is obtained for an absolute value of series expansion coefficients.

Theorem 5.1. Assume that f(t) is a continuous function on the interval [0, 1) such that

the |f ′′(t)| <R holds. In that case, if the function is expanded to in the form of an infinite

set of Legendre wavelets, then the series consistently converge to the function f(t). That

is,

f (t) =
∞∑
i=0

∞∑
j=0

cijψij (t) ,

Then

(5.1) |cij| <
2
√

3R

(2j)5/2 (2j − 3)2

Proof. See [29] for the proof. �

To examine and analyze the error of the given numerical method, function approxima-

tion using Legendre wavelets, the absolute error between the exact answer and approxi-

mate answer will be estimated and defined in the following ways.
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If the goal in the numerical method is to find the answer to u (t) for the given problem

(solving the equation or system fractional differential equations), the exact answer to the

problem is shown by uexact(t) and the approximate answer to the problem for k,m ∈ Z≥0

will be shown with uk,M(t), and the absolute error between the approximate and exact

answer in t, is calculated using the equation

(5.2) Eex
k,M (u (t)) = |uexact (t)−uk,M(t) | ,

However, the answer is often unknown. In this case, we calculate the approximate an-

swer to the problem for the two consecutive values (k,M) and (k + 1,M) or (k,M) and

(k,M + 1) notate as uk,M(t), and uk+1,M (t) respectively. Thus, the absolute error be-

tween the two approximate answers in it for this state is defined as

(5.3) EK,M (u (t)) = |uk,M (t)−uk+1,M(t) | .

Theorem 5.2. Assume that f(t) is a continuous function on the interval [0, 1) with a

bounded second derivative, |f ′′(x)| < R, and fk,M (t) =
∑2k−1

i=0

∑M−1
j=0 cijψij(t) provides

the approximation of the exact answer, that is f(t), in that case, we have:

(5.4) δk,m < 2
√

3R

(
∞∑
i=2k

1

(2i)5

∞∑
j=M

(2j − 3)4
)1/2

Where

(5.5) δk,m =

(∫ 1

0

[uexact (t)− uk,M(t)]dt

)1/2

Proof. According to the definition of δk,m and fk,M in the theorem, we have:

δ2k,m =

∫ 1

0

[f (t)− cijψij (t)]2dt

δ2k,m =

∫ 1

0

f (t)−
2k−1∑
i=0

M−1∑
j=0

cijψij(t)

 dt

(5.6)

(5.7)

∫ 1

0

∞∑
i=2k

∞∑
j=M

c2ij(ψij(t))
2dt =

∞∑
i=2k

∞∑
j=M

c2ij2
k (2j + 1)

∫ i+1

2k

i

2k

L∗2j
(
2kt− i

)
dt.
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We reuse the change made in the variable in proving the previous theorem is used again,

add the x = 2kt− i and thus dt = 1
2k
dx. In this case, we have:

(5.8) δ2k,m =
∞∑
i=2k

∞∑
j=M

c2ij (2j + 1)

∫ 1

0

L∗2j (x) dx =
∞∑
i=2k

∞∑
j=M

c2ij.

Thus, we can write:

(5.9) δ2k,m < 12R2

(
∞∑
i=2k

1

(2i)5

∞∑
j=M

1

(2j − 3)4

)
,

And the proof ends. �

As for the case where the exact answer to the problem is unknown, the following theorem

indicates the accuracy and convergence of the method.

Theorem 5.3. Assume fk,M (t) and fK+1, M (t) are two numerical answers to the un-

known function f(t), therefore the estimation of the δk,M defined above is convergent

for k and M .

Proof. Considering the definition of fk,M we have:

EK,M (f) = |fk,M − fK+1, M | = |(fk,M − f)− (fk+1, M − f)|

≤ |f − fk,M |+ |f − fk+1, M | = Eex
k,M (f) + Eex

k+1,M (f)

We have:

(5.10) δk,M = ‖EK,M‖E ≤
∥∥Eex

K,M + Eex
K+1,M

∥∥E ≤ ∥∥Eex
k,M

∥∥E +
∥∥Eex

k+1,M

∥∥E.
We find out that the norms

∥∥Eex
k,M

∥∥E and
∥∥Eex

k+1,M

∥∥E are convergent, thus the error

estimation of δk,M is convergent. �

6. Solving numerical examples

Numerical solutions and errors are calculated, evaluated, and provided in tables after

evaluating certain numerical instances with conditions of varying initial values. The

MATLAB software is used to solve all of the examples.

Example 6.1. In equation (1.1), by placing, = 1.1 , β = 1 , σ = 0.2, m = 3 , k = 2 ,

Initial conditions:

u (0, x) = 0, ut (0, x) = 0, 0 ≤ x ≤ 1
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Table 1. Example 6.1 error, by placing, α = 1.1 , β = 1 , σ =

0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.11*10−10 2.18*10−10 5.10*10−11 6.32*10−11 2.08*10−11

(3.13,3.13) 4.02*10−8 1.84*10−8 2.34*10−8 5.47*10−8 4.06*10−8

(5.13,5.13) 3.64*10−6 1.52*10−6 1.82*10−6 4.19*10−6 5.28*10−6

(7.13,7.13) 2.74*10−5 2.01*10−5 3.01*10−5 2.94*10−5 3.64*10−5

(9.13,9.13) 3.19*10−4 3.84*10−4 4.62*10−4 6.38*10−4 4.15*10−4

(11.13,11.13)1.59*10−7 1.04*10−7 2.14*10−7 3.55*10−7 2.07*10−7

Boundary conditions:

u (t, 0) = 0, ut (t, 1) = 0, 0 ≤ t ≤ 1

The right-side functions of the equation:

R (t, x) =

(
2t2−α

Γ (3− α)
+

1

2
(σxtπ)2 +

(
β − σ2

)
t2
)
sin (πx) + (β − 2(σ)2)t2xπcos(πx)

The accurate answer of this equation in example 6.1 is u (t, x) = t2sin (πx) . Example

6.1 is solved by the Legendre wavelet method for, α = 1.1 , β = 1 , σ = 0.2, m = 3 , k = 2

and its error is presented in Tables 1and 2.

Figure 2. Relation of B and error for example 6.1 for α = 1.1 , β =

1 , σ = 0.2 , m = 3 , k = 2

The method of numerical solution for α = 1.1 , β = 1 , σ = 0.2 , m = 3 , k = 2is

presented in Table 3 , 4.
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Table 2. Example 6.1 error, by placing, α = 1.1 , β = 1 , σ =

0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.02*10−10 2.02*10−10 5.02*10−11 6.10*10−11 2.01*10−11

(3.13,3.13) 4.00*10−8 1.77*10−8 2.22*10−8 4.19*10−8 4.00*10−8

(5.13,5.13) 3.52*10−6 1.48*10−6 1.67*10−6 4.10*10−6 5.12*10−6

(7.13,7.13) 2.10*10−5 2.00*10−5 2.88*10−5 2.45*10−5 3.23*10−5

(9.13,9.13) 3.08*10−4 3.66*10−4 4.38*10−4 6.05*10−4 3.82*10−4

(11.13,11.13)1.51*10−7 1.02*10−7 2.11*10−7 3.34*10−7 2.00*10−7

Figure 3. Approximate and exact solution, respectively for example 6.1

for α = 1.1 , β = 1 , σ = 0.2 , m = 3 , k = 2

Example 6.2. The numerical solution of the following equation:

In equation (1.1), by placing α = 1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2

Initial conditions:

u (0, x) = 0, ut (0, x) = 0, 0 ≤ x ≤ 1

Boundary conditions:

u (t, 0) =t3, ut (t, 1) = et3, 0 ≤ t ≤ 1
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Table 3. The numerical solution of example 6.1 by placing, α =

1.1 , β = 1 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 2.55*10−4 2.54*10−4 2.54*10−4 2.53*10−4 2.53*10−4

(3.13,3.13) 3.84*10−3 3.83*10−3 3.83*10−3 3.82*10−3 3.82*10−3

(5.13,5.13) 1.64*10−2 1.63*10−2 1.63*10−2 1.62*10−2 1.62*10−2

(7.13,7.13) 1.79*10−2 1.78*10−2 1.78*10−2 1.76*10−2 1.76*10−2

(9.13,9.13) 2.13*10−2 2.12*10−2 2.12*10−2 2.11*10−2 2.11*10−2

(11.13,11.13)3.18*10−2 3.18*10−2 3.17*10−2 3.17*10−2 3.16*10−2

Table 4. The numerical solution of example 6.1 by placing, α =

1.1 , β = 1 , σ = 0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 2.87*10−4 2.41*10−4 2.88*10−4 2.36*10−4 2.66*10−4

(3.13,3.13) 3.92*10−3 3.64*10−3 3.90*10−3 3.67*10−3 3.74*10−3

(5.13,5.13) 1.71*10−2 1.60*10−2 1.75*10−2 1.54*10−2 1.53*10−2

(7.13,7.13) 1.66*10−2 1.55*10−2 1.83*10−2 1.58*10−2 1.62*10−2

(9.13,9.13) 2.10*10−2 2.01*10−2 2.01*10−2 2.00*10−2 2.00*10−2

(11.13,11.13)3.08*10−2 3.03*10−2 3.11*10−2 3.03*10−2 3.08*10−2

The right-side functions of the equation:

R (t, x) =

(
Γ (4)

Γ (4− α)
t3−α − 1

2
σ2x2t3 + (β − 2σ2)xt3 + (β − σ2)t3

)
ex

The accurate response to this equation in example 6.2 isu (t, x) = t3ex. Example 6.2 is

solved by the Legendre wavelet method for α = 1.1 , β = 0.5 , σ = 0.2 , m = 3 , k =

2 and its error has been shown in Table 7 , 8.
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Table 5. The exact solution of example 6.1 by placing, α = 1.1 , β =

1 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 2.44*10−4 2.43*10−4 2.43*10−4 2.42*10−4 2.42*10−4

(3.13,3.13) 3.80*10−3 3.80*10−3 3.80*10−3 3.81*10−3 3.81*10−3

(5.13,5.13) 1.59*10−2 1.59*10−2 1.59*10−2 1.58*10−2 1.57*10−2

(7.13,7.13) 1.76*10−2 1.75*10−2 1.75*10−2 1.74*10−2 1.73*10−2

(9.13,9.13) 2.19*10−2 2.18*10−2 2.15*10−2 2.14*10−2 2.14*10−2

(11.13,11.13)3.12*10−2 3.12*10−2 3.11*10−2 3.11*10−2 3.10*10−2

Table 6. The exact solution of example 6.1 by placing, α = 1.1 , β =

1 , σ = 0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 2.41*10−4 2.41*10−4 2.40*10−4 2.41*10−4 2.40*10−4

(3.13,3.13) 3.77*10−3 3.77*10−3 3.77*10−3 3.78*10−3 3.78*10−3

(5.13,5.13) 1.54*10−2 1.55*10−2 1.55*10−2 1.53*10−2 1.52*10−2

(7.13,7.13) 1.71*10−2 1.69*10−2 1.71*10−2 1.69*10−2 1.71*10−2

(9.13,9.13) 2.03*10−2 2.04*10−2 2.05*10−2 2.05*10−2 2.04*10−2

(11.13,11.13)3.18*10−2 3.18*10−2 3.17*10−2 3.17*10−2 3.16*10−2

Figure 4. Relation of B and error for example 6.2 for α = 1.1 , β =

0.5 , σ = 0.2 , m = 3 , k = 2



76 SHABAN MOHAMMADI∗ AND S. REZA HEJAZI

Table 7. The error of example 6.2 by placing, α = 1.1 , β = 0.5 , σ =

0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 4.52*10−8 5.41*10−8 5.19*10−8 4.99*10−8 5.55*10−8

(3.13,3.13) 3.76*10−6 4.12*10−6 4.63*10−7 4.47*10−6 4.34*10−6

(5.13,5.13) 2.91*10−9 3.04*10−9 5.33*10−8 3.12*10−8 3.17*10−8

(7.13,7.13) 2.74*10−4 2.14*10−4 3.55*10−4 2.39*10−4 2.37*10−4

(9.13,9.13) 3.21*10−4 3.01*10−4 4.12*10−4 4.19*10−4 4.20*10−4

(11.13,11.13)1.18*10−3 1.44*10−3 2.01*10−3 1.67*10−3 1.33*10−3

Table 8. The error of example 6.2 by placing, α = 1.1 , β = 0.5 , σ =

0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 4.33*10−8 5.35*10−8 5.10*10−8 4.88*10−8 5.34*10−8

(3.13,3.13) 3.66*10−6 4.10*10−6 4.52*10−7 4.16*10−6 4.23*10−6

(5.13,5.13) 2.80*10−9 3.00*10−9 5.12*10−8 3.10*10−8 3.01*10−8

(7.13,7.13) 2.63*10−4 2.23*10−4 3.47*10−4 2.23*10−4 2.31*10−4

(9.13,9.13) 3.10*10−4 3.08*10−4 4.01*10−4 4.25*10−4 4.18*10−4

(11.13,11.13)1.07*10−3 1.39*10−3 2.01*10−3 1.60*10−3 1.27*10−3

In Table 9, 9, the numerical solution method for α = 1.1 , β = 0.5 , σ = 0.2 , m =

3 , k = 2 has been shown.

Example 6.3. The numerical solution of the following equation:

In equation (1.1), by placing , α = 1.1 , β = 0.5 , σ = 0.2, m = 3 , k = 2
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Figure 5. Approximate and exact solution, respectively for example 6.2

for α = 1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2

Table 9. The numerical solution of example 6.2 by placing, α =

1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.55*10−4 5.54*10−4 5.53*10−4 5.52*10−4 5.55*10−4

(3.13,3.13) 2.84*10−3 2.83*10−3 2.82*10−3 2.82*10−3 2.81*10−3

(5.13,5.13) 1.55*10−2 1.54*10−2 1.53*10−2 1.53*10−2 1.51*10−2

(7.13,7.13) 3.28*10−2 3.27*10−2 3.26*10−2 3.25*10−2 3.25*10−2

(9.13,9.13) 1.13*10−2 1.12*10−2 1.11*10−2 1.11*10−2 1.10*10−2

(11.13,11.13)7.18*10−2 7.17*10−2 7.16*10−2 3.16*10−2 3.15*10−2

Initial conditions:

u (0, x) = 0, ut (0, x) = 0, 0 ≤ x ≤ 1

Boundary conditions:

u (t, 0) = 0, ut (t, 1) = t3sin2x , 0 ≤ t ≤ 1

The right-side functions of the equation:

R (t, x) = (
Γ (4)

Γ (4− α)
t3−α + (β − σ2)t3)sin2x− σ2x2t

3
cos(2x) + (β − σ2)xt3sin(2x)
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Table 10. The numerical solution of example 6.2 by placing, α =

1.1 , β = 0.5 , σ = 0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.16*10−4 5.18*10−4 5.17*10−4 5.17*10−4 5.22*10−4

(3.13,3.13) 2.66*10−3 2.66*10−3 2.64*10−3 2.63*10−3 2.64*10−3

(5.13,5.13) 1.47*10−2 1.46*10−2 1.46*10−2 1.47*10−2 1.45*10−2

(7.13,7.13) 3.33*10−2 3.32*10−2 3.31*10−2 3.30*10−2 3.30*10−2

(9.13,9.13) 1.48*10−2 1.47*10−2 1.46*10−2 1.46*10−2 1.45*10−2

(11.13,11.13)7.30*10−2 7.29*10−2 7.28*10−2 3.27*10−2 3.26*10−2

Table 11. The exact solution of example 6.2 by placing, α = 1.1 , β =

0.5 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.12*10−4 5.12*10−4 5.11*10−4 5.11*10−4 5.12*10−4

(3.13,3.13) 2.42*10−3 2.43*10−3 2.43*10−3 2.42*10−3 2.42*10−3

(5.13,5.13) 1.32*10−2 1.33*10−2 1.33*10−2 1.32*10−2 1.31*10−2

(7.13,7.13) 3.22*10−2 3.21*10−2 3.20*10−2 3.20*10−2 3.21*10−2

(9.13,9.13) 1.32*10−2 1.30*10−2 1.30*10−2 1.30*10−2 1.29*10−2

(11.13,11.13)7.08*10−2 7.07*10−2 7.06*10−2 3.06*10−2 3.05*10−2

The accurate response to this equation in example 6.3 isu (t, x) = t3sin2x . Example 6.3

is solved by the Legendre wavelet method for α = 1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2

and its error has been shown in Tables 13 , 14.
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Table 12. The exact solution of example 6.2 by placing, α = 1.1 , β =

0.5 , σ = 0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.19*10−4 5.18*10−4 5.19*10−4 5.18*10−4 5.19*10−4

(3.13,3.13) 2.49*10−3 2.50*10−3 2.48*10−3 2.48*10−3 2.49*10−3

(5.13,5.13) 1.44*10−2 1.44*10−2 1.40*10−2 1.43*10−2 1.43*10−2

(7.13,7.13) 3.21*10−2 3.22*10−2 3.20*10−2 3.20*10−2 3.20*10−2

(9.13,9.13) 1.45*10−2 1.45*10−2 1.45*10−2 1.46*10−2 1.46*10−2

(11.13,11.13)7.22*10−2 7.25*10−2 7.25*10−2 3.22*10−2 3.24*10−2

Table 13. The error of example 6.3 by placing, α = 1.1 , β = 0.5 , σ =

0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 3.52*10−8 5.85*10−8 5.19*10−8 4.84*10−8 5.60*10−8

(3.13,3.13) 3.18*10−6 4.24*10−6 4.63*10−7 4.55*10−6 4.23*10−6

(5.13,5.13) 2.91*10−9 3.11*10−9 5.02*10−8 3.11*10−8 3.27*10−8

(7.13,7.13) 2.45*10−4 2.20*10−4 3.44*10−4 2.44*10−4 2.21*10−4

(9.13,9.13) 3.39*10−4 3.21*10−4 4.19*10−4 4.45*10−4 4.37*10−4

(11.13,11.13)1.71*10−3 1.59*10−3 2.11*10−3 1.55*10−3 1.47*10−3

In Table 15 , 16 the numerical solution method for α = 1.1 , β = 0.5 , σ = 0.2, m =

3 , k = 2 has been shown.
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Table 14. The error of example 6.3 by placing, α = 1.1 , β = 0.5 , σ =

0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 3.71*10−8 5.75*10−8 5.55*10−8 4.72*10−8 5.55*10−8

(3.13,3.13) 3.32*10−6 4.10*10−6 4.24*10−7 4.23*10−6 4.10*10−6

(5.13,5.13) 2.77*10−9 3.58*10−9 5.10*10−8 3.47*10−8 3.33*10−8

(7.13,7.13) 2.44*10−4 2.47*10−4 3.23*10−4 2.32*10−4 2.30*10−4

(9.13,9.13) 3.41*10−4 3.45*10−4 4.10*10−4 4.21*10−4 4.33*10−4

(11.13,11.13)1.85*10−3 1.69*10−3 2.23*10−3 1.63*10−3 1.59*10−3

Figure 6. Relation of B and error for example 6.3 for α = 1.1 , β =

0.5 , σ = 0.2 , m = 3 , k = 2

Figure 7. Approximate and exact solution, respectively for example 6.3

for α = 1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2
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Table 15. The numerical solution of example 6.3 by placing, α =

1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.47*10−4 5.42*10−4 5.77*10−4 5.78*10−4 5.44*10−4

(3.13,3.13) 2.75*10−3 2.76*10−3 2.75*10−3 2.74*10−3 2.79*10−3

(5.13,5.13) 1.62*10−2 1.67*10−2 1.54*10−2 1.72*10−2 1.47*10−2

(7.13,7.13) 3.31*10−2 3.33*10−2 3.36*10−2 3.36*10−2 3.33*10−2

(9.13,9.13) 1.19*10−2 1.28*10−2 1.01*10−2 1.22*10−2 1.19*10−2

(11.13,11.13)7.63*10−2 7.37*10−2 7.42*10−2 3.43*10−2 3.01*10−2

Table 16. The exact solution of example 6.2 by placing, α = 1.1 , β =

0.5 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.88*10−4 5.85*10−4 5.80*10−4 5.82*10−4 5.84*10−4

(3.13,3.13) 2.64*10−3 2.69*10−3 2.64*10−3 2.65*10−3 2.66*10−3

(5.13,5.13) 1.74*10−2 1.75*10−2 1.76*10−2 1.74*10−2 1.73*10−2

(7.13,7.13) 3.49*10−2 3.49*10−2 3.46*10−2 3.44*10−2 3.44*10−2

(9.13,9.13) 1.23*10−2 1.25*10−2 1.20*10−2 1.23*10−2 1.34*10−2

(11.13,11.13)7.55*10−2 7.50*10−2 7.49*10−2 3.45*10−2 3.44*10−2

7. Discussion and conclusion

Wavelets are one of the useful tools for numerical analysis of equations. The Legendre

wavelet is used to solve fractional differential equations and systems. The Legendre

wavelets have been introduced in this study. To do this, Legendre polynomials were ini-

tially developed, followed by the identification of Legendre wavelets and Legendre wavelet

operating matrices, and finally, the method of approximation of functions in terms of

Legendre wavelets. The Fokker-Planck-Kolmogorov fractional differential equations were
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Table 17. The numerical solution of example 6.3 by placing, α =

1.1 , β = 0.5 , σ = 0.2 , m = 3 , k = 2

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.40*10−4 5.40*10−4 5.42*10−4 5.43*10−4 5.44*10−4

(3.13,3.13) 2.68*10−3 2.69*10−3 2.68*10−3 2.69*10−3 2.68*10−3

(5.13,5.13) 1.55*10−2 1.52*10−2 1.52*10−2 1.55*10−2 1.54*10−2

(7.13,7.13) 3.09*10−2 3.10*10−2 3.10*10−2 3.10*10−2 3.10*10−2

(9.13,9.13) 1.25*10−2 1.24*10−2 1.24*10−2 1.25*10−2 1.25*10−2

(11.13,11.13)7.80*10−2 7.82*10−2 7.82*10−2 3.83*10−2 3.80*10−2

Table 18. The numerical solution of example 6.3 by placing, α =

1.1 , β = 0.5 , σ = 0.2 , m = 4 , k = 3

(x, t) α=1.1 α=1.3 α=1.5 α=1.7 α=1.9

(1.13,1.13) 5.36*10−4 5.37*10−4 5.35*10−4 5.36*10−4 5.37*10−4

(3.13,3.13) 2.52*10−3 2.53*10−3 2.24*10−3 2.23*10−3 2.25*10−3

(5.13,5.13) 1.61*10−2 1.62*10−2 1.63*10−2 1.62*10−2 1.62*10−2

(7.13,7.13) 3.22*10−2 3.24*10−2 3.23*10−2 3.24*10−2 3.25*10−2

(9.13,9.13) 1.19*10−2 1.20*10−2 1.20*10−2 1.19*10−2 1.21*10−2

(11.13,11.13)7.44*10−2 7.44*10−2 7.45*10−2 3.34*10−2 3.35*10−2

solved using the Legendre wavelet fractional integral operational matrix. The numeri-

cal approach was provided with a theorem after solving the aforementioned equation, and

the convergence analysis of the function approximation was performed using the Legendre

wavelet. The absolute value of the error between the precise and approximate answers

provided by the numerical technique was then introduced, and the numerical method’s

error was analyzed.
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