[1] Aas, K. Czado, C. Frigessi, A. Bakken, H.,Paircopula constructions of multiple dependence, Insurance: Mathematics and economics, 2(44) (2009),18298.
[2] Amirhakimi, G., A longitudinal growth study from birth to maturity for weight, height and head circumference of normal Iranian children compared with western norms: A standard for growth of Iranian children, Iranian Journal of Medical Sciences, 28 (2015), 916.
[3] Bairakdar, R., Modeling Nested Copulas with GLMM Marginals for Longitudinal Data, Doctoral
dissertation, Concordia University, 2017.
[4] Bedford, T. Cooke, R. M.,Vines: A new graphical model for dependent random variables, Annals of Statistics , 30(4) (2002), 1031 1068.
[5] Behrman, R., Kliegman, R. and Jenson H. Nelson textbook of pediatrics, 16th Edition, WB Sauders Company, Philadelphia, 2000.
[6] De Leon, A. Zhu Y., ANOVA extensions for mixed discrete and continuous data, Computational Statistics & Data Analysis, 52 (2008), 22182227.
[7] De Leon, A.R. Wu, B., Copula‐based regression models for a bivariate mixed discrete and continuous outcome, Statistics in medicine, 2(30) (2011),17585.
[8] Diggle, P., Analysis of longitudinal data, Oxford University Press, United States, 2000.
[9] Fitzmaurice, G. Davidian, M. Verbeke, G. Molenberghs, G., Longitudinal data analysis, CRC Press,United States, 2008.
[10] Genest, C. MacKay, J. The joy of copulas: bivariate distributions with uniform marginals,The American Statistician,4 (40) (1986), 2803.
[11] Genest, C. Nešlehová, J. A primer on copulas for count data, Astin Bulletin, 2 (37) (2007), 475515.
[12] Green, C. J., Fibre in enteral nutrition, Clinical Nutrition, 20 (2001), 2339.
[13] Gueorguieva, R.V. Agresti A., A correlated probit model for joint modeling of clustered binary and continuous responses, Journal of the American Statistical Association, 455 (2001), 110, 212.
[14] Jiryaie, F. Withanage, N. Wu, B. de Leon, A.,Gaussian copula distributions for mixed data, with
application in discrimination, Journal of Statistical Computation and Simulation, 9 (86) (2016), 16431659.
[15] Joe, H., Multivariate models and multivariate dependence concepts, CRC Press, United States, 1997.
[16] Johnson, R.A. Wichern, D.W. ,Applied multivariate statistical analysis, Prentice hall Upper Saddle River, NJ, United States, 2002.
[17] Kim, J. M., Liao, S. M., Jung, Y. S. , Mixture of Dvine copulas for modeling dependence, Computational Statistics & Data Analysis, 64 (2007), 0119.
[18] Kole, E. Koedijk, K. Verbeek, M., Selecting copulas for risk management, Journal of Banking & Finance, 8 (31) (2007), 24052423.
[19] Kolev, N. Paiva, D.,Copulabased regression models: A survey, Journal of statistical planning and inference, 11 (139) (2009),38473856.
[20] Laird, N. M. Ware, J. H., Randomeffects models for longitudinal data, Biometrics, 38 (4) (1982),963974.
[21] Lee, Y. Nelder, J. A.,Hierarchical generalized linear models, Journal of the Royal Statistical Society Series B (Methodological), 58 (4) (1996), 619656.
[22] Lin, H.,DVine PairCopula Models for Longitudinal Binary Data, Doctoral dissertation, Old Dominion University, 2020.
[23] Nelsen R. B.,Copulas and association. Advances in probability distributions with given marginals, Springer, New York, 1991.
[24] Nelsen, R.,An introduction to copulas, Springer, New York, 2006.
[25] Nikoloulopoulos, A.K. Joe, H., Factor copula models for item response data, Psychometrika, 80(2015), 126130
[26] Pinheiro, J.C. Chao, E.C.,Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models, Journal of Computational and Graphical Statistics, 15 (2006), 5881.
[27] Radice, R. Marra, G. Wojtys, M., Copula Regression Spline Models for Binary Outcomes With Application in Health Care Utilization, Univ Coll Lond Res Rep,(2013).
[28] Reyhani, T. Ajam, M.,The comparative study of the 06 month childeren growth curve using formula and breast ffeding in Gonabad city, Iranian Academic Center for Education, Culture and Research, 6(2000), 4955.
[29] Roy, M., Conditional Dependence in Joint Modelling of Longitudinal NonGaussian Outcomes, University of Calgary, 2016.
[30] Nai Ruscone, M., & Osmetti, S. A,Modelling the dependence in multivariate longitudinal data by pair copula decomposition. InSoft methods for data science, 27 (2017), 373380.
[31] Sabeti, A. Wei, M. Craiu, R. V. Additive models for conditional copulas, Stat, 3 (1) (2014), 300312.
[32] Sefidi, S., Ganjali, M. Analysis of ordinal and continuous longitudinal responses using pair copula construction. METRON., 80 (2022), 255280.
[33] Shi, P., & Zhao, Z.Predictive modeling of multivariate longitudinal insurance claims using pair copula construction. arXiv preprint arXiv, 1 (2018), 18057301.
[34] Sklar, A., Distribution functions of n dimensions and margins, Publications of the Institute of Statistics of the University of Paris, 8 (1959), 22931.
[35] Skuladottir, A. Thome, M. Ramel, A., Improving day and night sleep problems in infants by changing day time sleep rhythm: a single group before and after study, International journal of nursing studies, 42 (2005), 843850.
[36] Song, P. X. K, Li, M. Yuan, Y., Joint regression analysis of correlated data using Gaussian copulas, Biometrics, 65 (2009), 608.
[37] Toutounchi, P., The weight to age growth chart in 5 years old children and its risk factors in Tehran, Iran, Iranian Academic Center for Education, Culture and Research, 8 (2009), 6773.
[38] Trivedi, P. K. Zimmer, D.M., Copula modeling: an introduction for practitioners, Now Publishers Inc, United States, 2007.
[39] Victora, C.G. Bahl, R. Barros, AJ. França, G.V. Horton, S. Krasevec, J., Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect, The Lancet, 387 (2016), 47590.
[40] Withanage, N. N. K. P. ,Methods and Applications in the Analysis of Correlated NonGaussian
Data, University of Calgary, 2013.
[41] Wu, B. de Leon, A. R., Gaussian copula mixed models for clustered mixed outcomes, with application in developmental toxicology, Journal of Agricultural, Biological, and Environmental Statistics, 19(2014), 3956.
[42] Xue Kun Song, P., Multivariate dispersion models generated from Gaussian copula. Scandinavian Journal of Statistics, 27 (2000), 15341561
[43] Yang, L., Czado, C., Two part Dvine copula models for longitudinal insurance claim data. Scandinavian Journal of Statistics, 49 (2022), 305320.
[44] Zimmer, D.M. Trivedi, P. K.,Using trivariate copulas to model sample selection and treatment effects:application to family health care demand, Journal of Business & Economic Statistics, 24 (2006), 6376