Document Type : Original Paper
Authors
Department of Mathematics, Faculty of Basic Science, Shahed University, Tehran, Iran
Abstract
Highlights
[1] Bechouat, T., 2023. A collocation method for Fredholm integral equations of the first kind via
iterative regularization scheme. Mathematical Modelling and Analysis, 28(2), pp. 237–254. doi:
https://doi.org/10.3846/mma.2023.16453.
[2] Bhrawya, A. H., Abdelkawy, M. A., Machadoc, J. T. and Amin, A. Z. M., 2016. Legendre–Gauss–
Lobatto collocation method for solving multidimensional Fredholm integral equations. Computers and Mathematics with Applications, in press. doi: https://doi.org/10.1016/j.camwa.2016.04.011.
[3] Brunner, H., 2004. Collocation methods for Volterra integral and related functional equations. Cambridge University Press.
[4] Brunner, H., 2017. Volterra integral equations: an introduction to theory and applications. Cambridge University Press, Cambridge.
[5] Ebrahimi, N. and Rashidinia, J., 2015. Collocation method for linear and nonlinear Fredholm
and Volterra integral equations. Applied Mathematics and Computation, 270, pp: 156–164. doi:
https://doi.org/10.1016/j.amc.2015.08.032.
[6] Guoqiang, H., Hayami, K., Sugihara, K. and Jiong, W., 2000. Extrapolation method of iterated collocation solution for twodimensional nonlinear Volterra integral equations. Applied Mathematics and Computation, 112, pp: 49–69. doi: https://doi.org/10.1016/S00963003(99)000363.
[7] Hoseini, S. H., Tari, A. and HassanpourEzatti, M., 2017. Introducing an IntegroDifferential Equation Model for Spread of Addictive Drugs abuse Quarterly Journal of Research on Addiction, 10(40), pp:255–266. doi: http://etiadpajohi.ir/article11002fa.html, (In Persian).
[8] Hutson, V. and Pym, J. S., 2004. Applications of functional analysis and operator theory. Cambridge University Press.
[9] Jerri, A. J., 1999. Introduction to integral equations with applications. John Wiley and Sons, INC.
[10] Kasture, D. Y. and Deo, G., 1977. Inequalities of Gronwall type in two independent variables. Journal of Mathematical and Applications, 58, pp: 361–372.
[11] Kazemi, S. and Tari, A., 2022. Collocation Method for Solving TwoDimensional Fractional Volterra IntegroDifferential Equations. Iranian Journal of Science and Technology, Transactions A: Science, 46, pp: 1629–1639. doi: https://doi.org/10.1007/s4099502201346x.
[12] Khan, F., Omar M. and Ullah, Z., 2018. Discretization method for the numerical solution of 2D
Volterra integral equation based on twodimensional Bernstein polynomial. AIP Advances, 8, pp: 1–9.doi:10.1063/10.5051113
[13] Liang, H. and Brunner, H., 2019. The Convergence of collocation solution in continuous piecewisepolynomial spaces for weakly singular Volterra integral equations. Siam J. Numerical Analysis, 57(4),pp: 1875–1896. doi: https://doi.org/10.1137/19M1245062.
[14] Marasi, H.R., Soltani Joujehi, A. and Derakhshan, M.H., 2023. Solving Fractional Differential Equations Using Differential Transform Method Combined with Fractional Linear Multistep Methods. Journal of Advanced Mathematical Modeling (JAMM), 13(1), pp: 1–16. doi:10.22055/JAMM.2023.41315.2062, (In Persian).
[15] Rezazadeh, E., 2022. Investigation of a new method for the numerical solution of a system of hypersingular integral equations. Journal of Advanced Mathematical Modeling (JAMM), 12(3), pp: 448–468. doi: 10.22055/JAMM.2022.40893.2042, (In Persian).
[16] Tari, A. 2012. The differential transform method for solving the model describing biological species living together. Iranian Journal of Mathematical Sciences and Informatics, 7(2), pp: 55–66. doi:10.7508/ijmsi.2012.02.006.
[17] Tari, A. and Bildik, N., 2022. Numerical solution of Volterra series with error estimation. Applied and Computational Mathematics, 21(1), pp: 3–20. doi: 10.30546/16836154.21.1.2022.3.
[18] Wang, K. and Wang, Q., 2014. Taylor collocation method and convergence analysis for the Volterra–Fredholm integral equations. Journal of Computational and Applied Mathematics, 260, pp: 294–300.doi: https://doi.org/10.1016/j.cam.2013.09.050.
Keywords
Main Subjects