An eigenvalue optimization problem for Dirichlet-Laplacian with a drift

Document Type : Original Paper

Author

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz

Abstract

In this paper, we prove a monotonicity result related to the principal eigenvalue for Dirichlet-Laplacian with a drift operator in a punctured ball.

Keywords

Main Subjects


[1] Bozorgnia, F., Mohammadi, S. A. and Vejchodsky, T., 2019. The  rst eigenvalue and eigenfunction of a nonlinear elliptic system. Applied Numerical Mathematics, 145, pp.159-174. doi:10.1016/j.apnum.2019.06.004.
[2] Chorwadwala, A.M.H. and Mahadevan R., 2015. An eigenvalue optimization problem for the p-Laplacian. Proc. R. Soc. Edinb. A, 145, pp.1145-1151. doi: 10.1017/S0308210515000232.
[3] Emamizadeh, B. and Zivari-Rezapour, M., 2007. Monotonicity of the principal eigenvalue of the p-Laplacian in an annulus. Proc. Am. Math. Soc., 136,pp.1325-1331. doi:10.1090/S0002-9939-07-09153-8.
[4] Garca-Melian, J. and Sabina de Lis, J., 2001. On the perturbation of eigenvalues for the p-Laplacian. C. R. Acad. Sci. Paris Ser. I, 332, pp.893-898. doi:10.1016/S0764-4442(01)01956-5.
[5] Harrell, E. M., Kroger, P. and Kurata, K., 2001. On the placement of an obstacle or a well as to optimize the fundamental eigenvalue. SIAM J. Math. Analysis, 33 , pp.240-259. doi:10.1137/S00361410993575.
[6] Henrot, A., 2006. Extremum problems for eigenvalues of elliptic operators, Springer. doi:10.1007/3- 7643-7706-2.
[7] Kesavan S., 2003. On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. R. Soc. Edinb. A, 133, pp.617-624. doi:10.1017/S0308210500002560.
[8] Lamberti, P. D., 2003. A di erentiability result for the  rst eigenvalue of the p-Laplacian upon domain perturbation. Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, vol. I, II, pp.741-754.
[9] Mohammadi, S. A., Bozorgnia, F. and Voss, H., 2019. Optimal Shape Design for the p-Laplacian Eigenvalue Problem. Journal of Scienti c Computing, 78, pp.1231-1249. doi:10.1007/s10915-018- 0806-7.
[10] Ramm, A. G. and Shivakumar, P. N., 1998. Inequalities for the minimal eigenvalue of the Laplacian in an annulus. Math. Inequalities Applic., 1, pp.559-563. doi:10.48550/arXiv.math-ph/9911040.
[11] Simon, J., 1980. Di erentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. and Optimiz., 2, pp.649-687. doi:10.1080/01630563.1980.10120631.
[12] Sokolowski, J. and Zolesio, J. P., 1992. Introduction to shape optimization: shape sensitivity analysis. Springer Series in Computational Mathematics, vol. 10. doi:10.1007/978-3-642-58106-9.
[13] Walter, W., 1989. A theorem on elliptic di erential inequalities with an application to gradient bounds. Math. Z., 200, pp.293-299. doi:10.1007/BF01230289.