

AN EIGENVALUE OPTIMIZATION PROBLEM FOR DIRICHLET-LAPLACIAN WITH A DRIFT

MOHSEN ZIVARI-REZAPOUR

Communicated by: F. Azarpanah

Abstract. In this note, we prove a monotonicity result related to the principal eigenvalue for Dirichlet-Laplacian with a drift operator in a punctured ball.

1. Introduction

Let B be the unit ball in \mathbb{R}^{n} centered at the origin, B_{h} is the ball centered at $(h, 0) \in$ $\mathbb{R} \times \mathbb{R}^{n-1}$ with radius $r<1$ and $D_{h}:=B \backslash \overline{B_{h}}, 0 \leq h \leq 1-r$. Here \bar{E} denotes the clouser of the set $E \subset \mathbb{R}^{n}$. Let $L:=\Delta+x \cdot \nabla$ be the Laplace operator with a drift. We consider the following eigenvalue problem

$$
\begin{cases}-L u(x)=\lambda u(x) & \text { for } x \in D_{h} \tag{1.1}\\ u(x)=0 & \text { for } x \in \partial D_{h}\end{cases}
$$

or equivalently in the weighted eigenvalue problem

$$
\begin{cases}-\nabla \cdot\left(e^{|x|^{2} / 2} \nabla u(x)\right)=\lambda e^{|x|^{2} / 2} u(x) & \text { for } x \in D_{h} \tag{1.2}\\ u(x)=0 & \text { for } x \in \partial D_{h}\end{cases}
$$

We say $(\lambda, u) \in \mathbb{R} \times H_{0}^{1}\left(D_{h}\right)$ is an eigenpair for the problem (1.1) whenever

$$
\begin{equation*}
\int_{D_{h}} e^{|x|^{2} / 2} \nabla u \cdot \nabla v \mathrm{~d} x=\lambda \int_{D_{h}} e^{|x|^{2} / 2} u v \mathrm{~d} x, \tag{1.3}
\end{equation*}
$$

MSC(2020): 35J20, 49R05.
Keywords: Monotonicity, Eigenvalue, Shape derivative, Laplacian.
Received: 11 April 2023, Accepted: 18 December 2023.
for all $v \in H_{0}^{1}\left(D_{h}\right)$. The real number λ is eigenvalue and the function u is called an eigenfunction associated to it.

One of the physical phenomena of the problem (1.1) is the vibration of an elastic membrane. Assume that D_{h} is a planar region occupied by an elastic membrane fixed around the boundary. It is well-known that natural frequencies of the membrane are related to the eigenvalues λ.

Let

$$
W_{h}:=\left\{w \in H_{0}^{1}\left(D_{h}\right): \int_{D_{h}} e^{|x|^{2} / 2} w^{2}(x) \mathrm{d} x=1\right\} .
$$

The principal (first) eigenvalue of (1.1) is

$$
\lambda_{1}(h)=\inf \left\{\int_{D_{h}} e^{|x|^{2} / 2}|\nabla w(x)|^{2} \mathrm{~d} x: w \in W_{h}\right\} .
$$

It is weel-known that the minimum is attained. Let $u_{h} \in W_{h}$ be a minimizer. Since $\left|u_{h}\right|$ is a minimizer as well, we can assume that u_{h} is non-negative in D_{h}. By a strong maximum principle we find that u_{h} is positive in D_{h}. Also, It is unique up to a constant factor of itself (see $[6,1,9]$ for more details). In this note, we show that $\lambda_{1}(h)$ is decreasing in $0 \leq h \leq 1-r$. To do this end, we use the shape derivative, see [11, 12, 3, 2, 4, 8], and deduce that

$$
\dot{\lambda_{1}}(h)=-\int_{\partial D_{h}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\right)^{2} \nu_{1} \mathrm{~d} S,
$$

where $\dot{\lambda_{1}}(h)$ denotes the derivative of λ_{1} with respect to h, ν stands for unit outward normal on ∂D_{h} and ν_{1} is the first component of ν. Then by the Walter's maximum principle [13, Theorem 2] we prove that $\dot{\lambda_{1}}(h) \leq 0$ for $0 \leq h \leq 1-r$. Note that we unable to show the strict monotonicity.

If $L=\Delta$ in (1.1), this result has been proved by Ashbaugh and Chatelain (personal communication, 2012), Harrell et al. [5], Kesavan [7], and Ramm and Shivakumar [10]. In [3], we tried to extend the result of Ramm and Shivakumar [10] for Dirichlet p-Laplacian eigenvalue problem but we were able to do that for weighted eigenvalue problem with a sign changing weight. Finally, Chorwadwala and Mahadevan [2] extend it. However, they were also unable to conclude the strict monotonicity.

2. Main result

The main result of the paper is the following

Theorem 2.1. Assume $\left(\lambda_{1}(h), u_{h}\right) \in \mathbb{R}^{+} \times W_{h}$ be the principal eigenpair of the eigenvalue problem (1.1). If $u_{h} \in C^{2}\left(D_{h}\right) \cap C\left(\overline{D_{h}}\right)$ then $\lambda_{1}(h)$ is decreasing for $0 \leq h \leq 1-r$.

Proof. We use the shape derivative. Let $\dot{u}_{h}:=\frac{d u_{h}}{d h}$ and $\dot{\lambda_{1}}(h):=\frac{d \lambda_{1}}{d h}$. We have

$$
\begin{cases}-\nabla \cdot\left(e^{|x|^{2} / 2} \nabla \dot{u}_{h}(x)\right)=e^{|x|^{2} / 2}\left(\dot{\lambda}_{1}(h) u_{h}(x)+\lambda_{1}(h) \dot{u}_{h}(x)\right) & \text { for } x \in D_{h} \tag{2.1}\\ \dot{u}_{h}(x)=-\frac{\partial u_{h}}{\partial \nu}(x) \nu_{1}(x) & \text { for } x \in \partial D_{h}\end{cases}
$$

where the boundary equation in (2.1) follows directly from [11, Theorem 3.2].
By multiply the differential equations in (1.2) and (2.1) by \dot{u}_{h} and u_{h} respectively, and integrate the results over D_{h} we infer that

$$
\begin{equation*}
\int_{D_{h}} e^{|x|^{2} / 2} \nabla u_{h} \cdot \nabla \dot{u}_{h} \mathrm{~d} x+\int_{\partial D_{h}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\right)^{2} \nu_{1} \mathrm{~d} S=\lambda_{1}(h) \int_{D_{h}} e^{|x|^{2} / 2} u_{h} \dot{u}_{h} \mathrm{~d} x \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D_{h}} e^{|x|^{2} / 2} \nabla u_{h} \cdot \nabla \dot{u}_{h} \mathrm{~d} x=\lambda_{1}(h) \int_{D_{h}} e^{|x|^{2} / 2} u_{h} \dot{u}_{h} \mathrm{~d} x+\dot{\lambda_{1}}(h) \int_{D_{h}} e^{|x|^{2} / 2} u_{h}^{2} \mathrm{~d} x . \tag{2.3}
\end{equation*}
$$

Since $u_{h} \in W_{h}$ by subtracting (2.2) and (2.3) we deduce

$$
\begin{equation*}
\dot{\lambda_{1}}(h)=-\int_{\partial D_{h}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\right)^{2} \nu_{1} \mathrm{~d} S . \tag{2.4}
\end{equation*}
$$

By symmetry we have

$$
\int_{\partial B^{+}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\right)^{2} \nu_{1}(x) \mathrm{d} S=-\int_{\partial B^{-}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\right)^{2} \nu_{1}(x) \mathrm{d} S
$$

where $\partial B^{+}:=\left\{x \in \partial B: x_{1} \geq 0\right\}$ and $\partial B^{-}:=\left\{x \in \partial B: x_{1} \leq 0\right\}$. Therefore

$$
\dot{\lambda_{1}}(h)=-\int_{\partial B_{h}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\right)^{2} \nu_{1} \mathrm{~d} S .
$$

It's clear by symmetry that $\dot{\lambda_{1}}(0)=0$. We show that $\dot{\lambda_{1}}(h) \leq 0$ for $0 \leq h \leq 1-r$. To do this, we shift the coordinate axes so that the hyperplane $l=\left\{x \in \mathbb{R}^{n}: x_{1}=0\right\}$ passes through the center of B_{h}. Now, let $A:=\left\{x \in D_{h}: x_{1}>0\right\}$ and A^{*} be the image of it with respect to l. Also, let $\partial B_{h}^{+}:=\left\{x \in \partial B_{h}: x_{1} \geq 0\right\}$ and $\partial B_{h}^{-}:=\left\{x \in \partial B_{h}: x_{1} \leq 0\right\}$. We define the function

$$
v(x)= \begin{cases}u_{h}(x) & \text { if } x \in \bar{A}, \tag{2.5}\\ u_{h}\left(x_{l}\right) & \text { if } x \in \overline{A^{*}}\end{cases}
$$

where x_{l} is the reflection of x with respect to l. For $x \in A^{*}$, since $|x|=\left|x_{l}\right|$ we have

$$
\begin{align*}
-\nabla \cdot\left(e^{|x|^{2} / 2} \nabla v(x)\right) & =-\nabla \cdot\left(e^{\left|x_{l}\right|^{2} / 2} \nabla u_{h}\left(x_{l}\right)\right) \\
& =\lambda_{1}(h) u_{h}\left(x_{l}\right) e^{\left|x_{l}\right|^{2} / 2} \\
& =\lambda_{1}(h) v(x) e^{|x|^{2} / 2} \tag{2.6}
\end{align*}
$$

Let $w:=u_{h}-v$. From (2.6) and (1.2) we have

$$
\begin{equation*}
L w+\lambda_{1}(h) w=0 \text { in } A^{*}, w \geq 0 \text { on } \partial A^{*} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
L v+\lambda_{1}(h) v=0 \text { and } v>0 \text { in } A^{*} . \tag{2.8}
\end{equation*}
$$

Therefore, since $u_{h} \in C^{2}\left(D_{h}\right) \cap C\left(\overline{D_{h}}\right)$, by the Walter's maximum principle [13, Theorem 2] we deduce either $w=\beta v$ in A^{*} for some $\beta<0$ or $w \geq 0$ in A^{*}. Assume $w=\beta v$ in A^{*}. Let $x \in \partial A \cap \partial B^{+}$be fixed. So there exists a sequence $\left\{x^{(k)}\right\} \subset A$ such that $\left|x^{(k)}-x\right| \rightarrow 0$ as $k \rightarrow \infty$. From $u_{h} \in C\left(\overline{D_{h}}\right)$, we infer that

$$
0<u_{h}\left(x_{l}\right)=\lim _{k \rightarrow \infty} u_{h}\left(x_{l}^{(k)}\right)=\lim _{k \rightarrow \infty}\left(w\left(x_{l}^{(k)}\right)+v\left(x_{l}^{(k)}\right)\right)=(\beta+1) v\left(x_{l}\right)=0
$$

This is a contradiction. Hence $w \geq 0$ in A^{*}. Thus $u_{h} \geq v$ in A^{*}. Since $u_{h}=v=0$ on ∂B_{h}^{-}, for $z \in \partial B_{h}^{-}$we obtain

$$
\frac{\partial}{\partial \nu}\left(u_{h}-v\right)(z)=\lim _{t \rightarrow 0^{-}} \frac{\left(u_{h}-v\right)(z+t \nu)-\left(u_{h}-v\right)(z)}{t} \leq 0
$$

Thus $\frac{\partial u_{h}}{\partial \nu} \leq \frac{\partial v}{\partial \nu}$ on ∂B_{h}^{-}. Since $\frac{\partial v}{\partial \nu} \leq 0$ on ∂B_{h}^{-}, we infer that

$$
\begin{equation*}
\left|\frac{\partial u_{h}}{\partial \nu}\right| \geq\left|\frac{\partial v}{\partial \nu}\right| \text { on } \partial B_{h}^{-} \tag{2.9}
\end{equation*}
$$

Now from (2.9) we infer that

$$
\begin{aligned}
\int_{\partial B_{h}^{-}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}(x)\right)^{2} \nu_{1}(x) \mathrm{d} S & \geq \int_{\partial B_{h}^{-}} e^{|x|^{2} / 2}\left(\frac{\partial v}{\partial \nu}(x)\right)^{2} \nu_{1}(x) \mathrm{d} S \\
& =\int_{\partial B_{h}^{-}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}\left(x_{l}\right)\right)^{2} \nu_{1}(x) \mathrm{d} S \\
& =\int_{\partial B_{h}^{+}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}(x)\right)^{2} \nu_{1}\left(x_{l}\right) \mathrm{d} S \\
& =-\int_{\partial B_{h}^{+}} e^{|x|^{2} / 2}\left(\frac{\partial u_{h}}{\partial \nu}(x)\right)^{2} \nu_{1}(x) \mathrm{d} S .
\end{aligned}
$$

Therefore $\dot{\lambda_{1}}(h) \leq 0$.

Conclusion

According to the numerical results in [10], it seems that, also in our problem, λ_{1} be strictly decreasing, but for proving we will need probably a strong comparison principle which conclude that

$$
\left|\frac{\partial u_{h}}{\partial \nu}\right|>\left|\frac{\partial v}{\partial \nu}\right|
$$

in a neighbourhood of $\partial B_{h}^{-} \cap A^{*}$.

Acknowledgments

I am grateful to the Research Council of Shahid Chamran University of Ahvaz for the research grant SCU.MM1402.441.

References

[1] Bozorgnia, F., Mohammadi, S. A. and Vejchodský, T., 2019. The first eigenvalue and eigenfunction of a nonlinear elliptic system. Applied Numerical Mathematics, 145, pp.159-174. doi:10.1016/j.apnum.2019.06.004
[2] Chorwadwala, A.M.H. and Mahadevan R., 2015. An eigenvalue optimization problem for the pLaplacian. Proc. R. Soc. Edinb. A, 145, pp.1145-1151. doi: 10.1017/S0308210515000232
[3] Emamizadeh, B. and Zivari-Rezapour, M., 2007. Monotonicity of the principal eigenvalue of the p-Laplacian in an annulus. Proc. Am. Math. Soc., 136,pp.1325-1331. doi:10.1090/S0002-9939-07-09153-8
[4] García-Melián, J. and Sabina de Lis, J., 2001. On the perturbation of eigenvalues for the p-Laplacian. C. R. Acad. Sci. Paris Sér. I, 332, pp.893-898. doi:10.1016/S0764-4442(01)01956-5
[5] Harrell, E. M., Kröger, P. and Kurata, K., 2001. On the placement of an obstacle or a well as to optimize the fundamental eigenvalue. SIAM J. Math. Analysis, 33, pp.240-259. doi:10.1137/S00361410993575
[6] Henrot, A., 2006. Extremum problems for eigenvalues of elliptic operators, Springer. doi:10.1007/3-7643-7706-2
[7] Kesavan S., 2003. On two functionals connected to the Laplacian in a class of doubly connected domains. Proc. R. Soc. Edinb. A, 133, pp.617-624. doi:10.1017/S0308210500002560
[8] Lamberti, P. D., 2003. A differentiability result for the first eigenvalue of the p-Laplacian upon domain perturbation. Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, vol. I, II, pp.741-754.
[9] Mohammadi, S. A., Bozorgnia, F. and Voss, H., 2019. Optimal Shape Design for the p-Laplacian Eigenvalue Problem. Journal of Scientific Computing, 78, pp.1231-1249. doi:10.1007/s10915-018-0806-7
[10] Ramm, A. G. and Shivakumar, P. N., 1998. Inequalities for the minimal eigenvalue of the Laplacian in an annulus. Math. Inequalities Applic., 1, pp.559-563. doi:10.48550/arXiv.math-ph/9911040
[11] Simon, J., 1980. Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. and Optimiz., 2, pp.649-687. doi:10.1080/01630563.1980.10120631
[12] Sokolowski, J. and Zolesio, J. P., 1992. Introduction to shape optimization: shape sensitivity analysis. Springer Series in Computational Mathematics, vol. 10. doi:10.1007/978-3-642-58106-9
[13] Walter, W., 1989. A theorem on elliptic differential inequalities with an application to gradient bounds. Math. Z., 200, pp.293-299. doi:10.1007/BF01230289

Mohsen Zivari-Rezapour

Department of Mathematics,
Faculty of Mathematical Sciences and Computer,
Shahid Chamran University of Ahvaz,
Ahvaz, Iran
Email: mzivari@scu.ac.ir distributed under the terms and conditions of the Creative Commons Attribution-NonComertial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

