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Abstract. In this note, we intend to explain and interpret the proofs of some of the

classic mathematical results that are made easy by the beautiful mind of Karamzadeh,

who has an incredible love for mathematics and has been enthusiastically busy for years

with regard to its popularization. Concerning the latter comment, the general readers

are the primary focus of our attention.

1. Introduction

Before dealing with the title, let us cite the last comment in [37], which is related to

Karamzadeh’s thoughts, too “Let me conclude my letter with related advice my grand-

father gave my mom (he also happens to be a mathematics professor): If you intend to

become a mathematician, try in general to invent new tools for resolving problems that

exist naturally, instead of creating artificial problems (even suitable ones) that can be

resolved by the tools that you already have”. Incidentally, the author of [37] is the oldest

grandson of Karamzadeh whom I met recently at AIMC 54 (note, AIMC stands briefly

for the annual Iranian mathematics conference), in Zanjan, where he admitted enthusias-

tically that he wrote that note with the help of his mom and his grandfather. As a former
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student, a colleague, and a collaborator of Karamzadeh, I cannot help claiming that in

all these years, Karamzadeh has always been heeding his own advice, too. In particular,

he also believes that every mathematician should be able and interested to explain and

communicate his or her ideas in a way which is comprehensible to others (i.e. with enough

explanations), especially when they (i.e., the audiences and the listeners) are with less

knowledge and might not have the necessary background for the subject of discussions

and therefore they may not easily comprehend the discussion. Indeed, he believes that

mathematics is well-defined doodling, and this doodling is never complete unless it can

be shared by laymen, see [17, footnote]. He used to emphasize during our private talks,

see the acknowledgments in [29], that of all the published results in the current trends in

mathematics, in our expertise in the literature, only those remain useful and might ap-

pear in the future textbooks which are breakthrough discovery, or their proofs use some

unprecedented elements, or they introduced a fundamental concept which is to be of use

for many years to come. Otherwise, in the next century most of our published results will

be treated as nowadays we deal with the articles concerning the tables which contain the

four-place common logarithms and antilogarithms. However, Pythagoras Theorem will

remain interesting for ever in the literature. As for other elementary results similar to the

latter theorem, those which receive different proofs, every now and then, by some well-

known mathematicians (due to their importance and their applications) seem to be more

interesting and basic enough to remain for a long time in the literature and, in particular,

they are more likely to appear in the high-school textbooks. Karamzadeh parallel to do-

ing research in algebra, topology, and mathematics education, has always been interested

in dealing with latter kind of elementary results and has already provided elegant proofs

to some of them, which I believe will remain in the history of mathematics for a long

time. He usually says he may share the feeling of euphoria concerning some of his results

in algebra and topology with only a limited number of experts in these areas, whereas

for his proofs of some the above elementary results, the relevant euphoria may be shared

with million of students and their teachers throughout the world, spiritually, without any

kind of connections whatsoever with them. In fact, my motivation for writing this paper

is to revisit some of these elementary results and give some more comments about them

and reveal the importance and the novelty of Karamzadeh’s methods in the proofs of

some of these results (note, as I have already made it clear in [29, Acknowledgments], I
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have learned many interesting stories in mathematics (including facts and proofs in these

stories) from him. I must also make it clear that Karamzadeh has already dealt with

many of these results, see [27], [7] and in his published articles in some other appropriate

journals. However, I am going to deal only with a few of them, due to the scope of this

article. Naturally, this is somehow selective and personal. Fortunately, my choices are

not limited and I do my best that these choices of results to be in the reader’s interest.

In particular, in this article I prefer to deal with those elementary results which are quite

eligible to appear in the appropriate textbooks for the courses which are being taught to

our students at school. Fortunately, contrary to the style of writing research articles in

any particular field, there is no need for any preparatory work in this case, for this article

is to be read and enjoyed by anyone interested in mathematics. Consequently, without

further ado we begin our journey through Karamzadeh’s notes on the aforementioned

results and present our comments and thoughts on some of them.

2. Deus ex machina vs. Karamzadeh’s rational thoughts

Paul R. Halmos in [9, p.22] comments that the numbers 2 and 1
2

are both rational

numbers but 2
1
2 is not. This means there exist rational numbers a and b such that ab is

irrational. He then asks if that can be done the other way round. Hence, this is officially

put as the following problem in his book. Incidentally, this problem and its solution had

already been dealt with, at least 14 years earlier than in Halmos’s book , see [18] and [6].

Problem. [9, Problem 3B.] Do there exist irrational numbers α and β such that αβ is

rational? That is to say does there exist a rational number with an apparently irrational

representation such as αβ?

For the solution, Halmos argues that if
√

2
√
2

is rational, then we are done, for just put

α = β =
√

2. If not, then by taking α =
√

2
√
2

and β =
√

2 we are through, without

any extra work, see [9, P. 171]. It seems we have not done any mathematical work except

invoking the fact that every real number is either rational or irrational. However, Halmos

makes it clear to us that by a sophisticated result of Gelfond-Schneider which is a solution

of Hilbert’s seventh problem, namely, if a and b are algebraic numbers with a /∈ {0, 1} and

b is a real irrational number, then any value of ab is transcendental, hence it is irrational

(e.g.,
√

2
√
2
). Consequently,

√
2
√
2

is indeed irrational. However, one may ask how on earth

it occurred to Halmos or anyone else to consider the numbers α =
√

2
√
2

and β =
√

2?
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Although Halmos’s proof is just fine but it seems more like a narrative which sets up for

the punch line of a very good mathematical joke. Karamzadeh in [18] claims rightly that

this proof is indeed a deus ex machina. Now let us see what are the rational thoughts of

Karamzadeh on the above problem. He suggests the following remarkable theorem, whose

proof is as simple as the proof of the irrationality of
√

2, and provides a natural solution

to the above problem too, without any need for a deus ex machina or the theorem of

Gelfond-Schneider. In particular, it shows that in fact there are infinitely many such α

and β, see [27, P.131], for a sketch of proof. In what follows we give a full statement

of the theorem with its complete proof for the sake of the reader. And surprisingly we

notice that all positive rational numbers except 1 have infinitely many such apparently

irrational representation. Let us also imitate Conway and ask why should only Fermat and

Conway have little theorems?, see the witty comment of Conway in [18], therefore I also

take this opportunity and call this theorem “Karamzadeh’s little theorem”. Incidentally,

Conway’s little theorem was first published in 1976 in a joint article of Conway with

A. J. Jones as a comment, he republished it again in 2014 apparently with a different

proof but this time he calls it his little theorem. Incidentally, Karamzadeh has given

a very elementary short proof to this little theorem of Conway too, see [19]. Before

stating Karamzadeh’s little theorem, let us first consider the original source related to

this result. In his famous lecture in 1920, Hilbert proposed 23 problems for the upcoming

generation of mathematicians. Indeed, he had prepared 24 problems in his mind for the

presentation. However, the last one which was about whether every theorem has a proof

that is as simple as it can be, did not appear in the list of the problems, presented in that

lecture, see also [18]. It is interesting to notice that Hilbert’s seventh problem, i.e., his

conjecture, to which Karamzadeh’s little theorem is related (note, Euler’s conjecture and

Hilbert’s conjecture, shall be stated briefly) is also connected to the fact which can be

stated in a simple geometric language, namely, “if, in an isosceles triangle, the ratio of the

base angle to the angle at the vertex be algebraic but not rational, the ratio between base

and side is always transcendental”. In spite of the simplicity of this statement, Hilbert

believed that its proof similarly to the possible proof of his seventh problem would be very

difficult. For the latter problem, one may see his conjecture, following that of Euler’s,

briefly. We should bring to the attention of the reader that Hilbert rightly believed that

in dealing with mathematical problems, specialization plays, a still more important part
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than generalization, see [10, P. 411]. Considering this comment of Hilbert, We admit

that Karamzadeh’s little theorem can be considered as a very special case of Hilbert’s

seventh problem or even a consequence of Euler’s conjecture. However, we believe the

attractiveness of the little theorem’s statement and its constructive, simple and natural

proof, which is independent of the sophisticated and difficult proof of Gelfond-Schneider

of the problem of Hilbert, are what make it stand out as a conspicuous theorem of its

own. Incidentally, apparently Karamzadeh has briefly mentioned this little theorem as an

observation, in contrast to the above argument of Halmos, which he considered to be a

deus ex machina. This observation is first appeared in Karamzadeh’s talk at AIMC 25 in

1994, at Sharif University, where he was an invited speaker, see also the next remark.

Theorem 2.1. (Karamzadeh’s little theorem (1994)). Every positive rational num-

ber, r 6= 1 can be written in the form of r = ab, where a and b are irrationals. In

particular, there are infinitely many such irrational representations for r.

Proof. Let r = m
n

, where (m,n) = 1. Now take p to be a prime number with (m, p) =

(n, p) = 1. Then by the definition of logarithm we have r =
√
plog

√
p r. Clearly,

√
p

is irrational. It remains to be shown that log√p r is also irrational. To this end, let

us assume that log√p r = k
l
, i.e., r = m

n
=
√
p

k
l , where k, l are positive integers with

(k, l) = 1 and seek a contradiction (note, without loss we may assume that k
l
> 0 for

otherwise 1
r

= n
m

=
√
p
−k
l , where −k > 0, and n would then play exactly the role of m

in the proof that follows). Now consider the former equality, i.e., r = m
n

=
√
p

k
l . Raising

the two sides of the latter equality to the power of 2l we get m2l = pkn2l. It implies that

p must divide m which is the desired contradiction. The proof of the last part is evident

for there are infinitely many prime numbers p with (m, p) = (n, p) = 1. �

In my opinion the next comments are important from mathematics education points

of view. I cannot help concluding this starting part of the article with expressing my

strong belief (but, this time with mathematical reasonings for this unshakable belief,

which usually needs no proof or evidence) that the above simple and remarkable little

theorem of Karamzadeh, together with the above problem in Halmos’s book, should be

included in our school textbooks, where the irrationality of
√

2 is discussed. In that case,

I have no doubt this will give our students deep insights and motivations in learning

mathematics. Why not our students see the names of some of our living mathematicians
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with their original appropriate results?, in some of the textbooks that they are studying

for their courses in mathematics to get encouragements, motivations and insights. We

should make it clear not all the good mathematicians have appropriate results to be

included in elementary textbooks, even among the results of the winners of Fields Medal

we might not find any. Without insights and motivations nobody may be willing to

devote much time to learning mathematics and doing anything worthwhile in it. For a

proof of the latter comment we may read the autobiography of some of the successful

mathematicians to see that most of them owe their success to getting some insights after

seeing a beautiful result or a non-standard proofs of some tricky results. Mentioning

the above problem in Halmos’s book and the above little theorem of Karamzadeh in the

same course of mathematics, with proper discussions and explanations by the related

teacher, will certainly give the necessary insights and motivations to any young student

interested in mathematics. And at the same time it can also have a serious impact on

those students who are skeptical towards the beauty of mathematics to convince them

otherwise. Before, going into the next section, let us recall one of those stories which I

learned from Karamzadeh, see [29, Acknowledgment]. Motivated, by his little theorem we

might extend the above argument of Halmos to show, in the same vein, that there are in

fact infinitely many irrational numbers α, β as in Problem 3B (note, Karamzadeh’s little

theorem has already shown this). To this end, take any two natural numbers 0 6= a 6= 1,

0 6= b 6= 1 with n dividing b such that they are not the nth power and the mth power

of some natural numbers, respectively(note, m,n are integers greater than or equal to

2). Then we may consider α = n
√
a

m√
b

and β = m
√
b
m−1

and repeat the same argument

above for α and β (noting that also in view of Gelfond-Schneider’s result above α is

irrational and β is manifestly irrational too, but αβ = aq , where b = nq, hence the

problem is settled). However, without invoking the result of Gelfond-Schneider, we may

also settle the problem by just the above argument which we already called it a good

mathematical joke. Karamzadeh used to say that clearly the latter argument generalizes

Halmos’s, for just put a = b = n = m = 2. However, he admitted that we should not

get any credit for this observation for there is not any new method in the proof (note, we

just created a problem for the sake of the methods that we had already applied before,

see the above citation from [37], which we started off our article with). In fact, it looks

like repeating a good joke and this time it is just a good mathematical joke. It is time
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to recall Karamzadeh’s motto that “there is a difference between learning mathematics

and understanding it”, see [36]. A person who uses the above argument and settles the

problem by claiming that if
√

2
√
2

is rational then we are through, otherwise (
√

2
√
2
)
√
2

settles the problem has learned this problem well and his or her solution is also fine.

However, concerning the irrationality of
√

2
√
2
, if this person is still undecided about it,

then he or she has not really understood the real part of the solution. I cannot help

contrasting karamzadeh’s little theorem with his above generalization of the problem.

The former theorem can be followed (i.e. learned) and be understood well, by anyone

with a good high school background knowledge, however the latter generalization or even

the original problem cannot be understood well without knowing a result similar to the

result of Gelfond-Schneider.

Remark 2.2. This remark is added after I watched Karamzadeh’s recent talk “Research

week, its pros and cons” at Shahid Beheshti Universty during the Research week this

year, which was also presented online. My above comments related to Karamzadeh’s

little theorem, and a point that Karamzadeh brought out in his recent talk (note, he

made it clear that the Taxicab number 1729, the smallest number which can be written in

two different forms as the sum of two positive cubes, i.e., 1729 = 103 + 93 = 123 + 13 and

it is generally known, in the literature as Hardy-Ramanujan number, since 1921, is in fact

discovered almost three centuries earlier by the French mathematician Bernard Frènicle

de Bessy in 1657). Apparently Bessy send his discovery of the number 1729 in a private

letter to John Walis in 1657. This letter was later published in Walis’s book “Arithmetria

Infinitorum in 1658”. These findings made me think it over and have felt that I should

dig up more information about the above problem of Halmos. Although Karamzadeh

had already noted in [18] that before Halmos, (
√

2
√
2
)
√
2 was already dealt with in [6],

but he did not reveal that whether [6] was the earliest source. Therefore by doing some

extra research I noticed that this method of Halmos for dealing with the above problem

was first perhaps appeared in [12] and not in [6]. Also before Hilbert’s seventh problem

concerning the number αβ, where α and β are real numbers, I noticed that it was Euler

who first gave the next conjecture and in fact it seems that Hilbert’s Conjecture (i.e., his

seventh problem) was motivated by Euler’s.

Euler’s Conjecture (1748). If a 6= 1 is a nonzero rational number and b is an irrational

algebraic number then ab is irrational.
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Hilbert’s Conjecture (1900). If a, b are algebraic numbers with a 6= 1 or 0, and b is

irrational then ab is transcendental. Clearly, Hilbert’s Conjecture implies that of Euler’s.

Gelfond and Schneider in 1934-1935, independently resolved the above conjecture known

as Hilbert’s seventh problem. Consequently, for any positive rational number r 6= 1 one

can easily get an irrational number r
√
2 and, (r

√
2)

1√
2 = r, i.e., by Gelfond-Schneider

theorem any positive rational number r 6= 1 can be written as an irrational number to

the power of an irrational number. However, if we compare this latter fact with that of

Karamzdeh’s little theorem, although they prove the same fact, however we must admit

that results such as Gelfond-Schneider theorem are very sophisticated and difficult to

prove and certainly it will take many years (or, perhaps centuries) to come to be ready

in the future for presentation for kids at school. However, Karamzadeh’s little Theorem

is as simple as the irrationality of
√

2 and it can be inserted in the school textbooks for

kids, tomorrow. This is why we believe this interesting observation of Karamzadeh needs

to be called his little theorem to attract the attention of the reader and in particular

the authors of school textbooks. Invoking some complicated theorems to settle a natural

question asked by school kids not only keep them away from mathematics it may also

frighten them for ever. For example, if someone asks us why 125 cannot be written as a

sum of two nonzero integer cubes and we promptly say because of the Last Theorem of

Fermat, have we given a proper solution? By the way, due to the importance of questions

related to numbers which are of the form of an irrational number to the power an irrational

number, some well-known logicians and mathematicians have published and commented

on the subject, see [1, 12, 14, 38].

3. AM-GM Inequality is made as “a walk in the park”, by Karamzadeh

The AM-GM inequality which simply says the arithmetic mean of any finite non-

negative real numbers is not less than their geometric mean, i.e., x1+x2···+xn
n

≥ n
√
x1x2 · · ·xn,

where xi ≥ 0 with i = 1, 2, · · · , n, is perhaps the best known and most useful nontrivial in-

equality in mathematics which generates many other inequalities. Perhaps one may claim

it has the largest number of different proofs in the literature. Some of these proofs were

given by the first rate mathematicians like, Hölder, Cauchy, Hardy, Polya (just to mention

a few) and many others. It is believed that the Greek mathematicians had a geometric

proof for the case n = 2, see the well-known snakelet (this name is given by Karamzadeh
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to this possible proof of Greeks), see [15, P. 51]. Let us now deal with Karamzadeh’s one

line proof of this inequality in [21]. He believes almost all inequalities in mathematics

are stated in the form of “if P then Q”, which is called pq-style by Karamzadeh in [17].

He in fact proves the AM-GM inequality is nothing but a trivial consequence of a hid-

den meaning of a ≤ x ≤ b, where these are positive real numbers. He observes that if

0 < a ≤ b and 0 < x then a ≤ x ≤ b if, and only if, (x− a)(b− x) ≥ 0 or if, and only if,

a+b ≥ x+ ab
x

. This is manifestly a generalization of AM-GM inequality for the case n = 2,

for just put x =
√
ab and the equality holds if, and only if, either x = a or x = b. We may

replace x by any function f(y, z), where a ≤ f(a, b) ≤ b to get infinitely many nontrivial

inequalities such as a + b ≥ f(a, b) + ab
f(a,b)

, see [2] for some special cases of this function

f . In particular, by taking f(a, b) = m+n
√
ambn, where m,n are positive integers, we get

the interesting inequality a+ b ≥ m+n
√
ambn + m+n

√
anbm. I do believe the latter inequality

should appear in the elementary textbooks, right after the inequality of a+b ≥ 2ab, which

is the special case of the former inequality where m = n = 1. My colleague Dr. Azarang

has rightly claims with good reasoning in [2] that Karamzadeh’s proof is not merely an-

other different simple proof of AM-GM inequality. It has some conspicuous advantages

over the other proofs of this inequality in the literature. To be honest and with all due

respect to all the authors who have already given some proofs to this inequality, I believe

not only the existing proofs but also the future possible proofs of this inequality cannot

hold candle to Karamzdeh’s proof. Because, as once Karamzadeh has claimed rightly the

inequality a ≤ x ≤ b carries intrinsically a stronger mathematical fact than AM-GM in-

equality and a fortiori than many other well known and important inequalities which are

equivalent to the latter inequality, see for example, [23], [26]. Although as it is claimed in

[2], the unprecedented statement a+ b ≥ x+ ab
x

above is the whole proof of the AM-GM

inequality, however I present the proof for the sake of the completeness, which is just a

trivial induction away from the latter statement. Incidentally, the above unprecedented

statement is indeed the above hidden meaning of a ≤ x ≤ b which is pointed out earlier

by Karamzadeh. Without loss we may assume that x1 ≤ xi and x2 ≥ xi for all i ≤ n. Put

gn = x1x2 · · · xn. If all xi are equal we are done, otherwise x1 < g < x2 and hence by the

above unprecedented statement we have x1 + x2 > g + x1x2
g

. This implies, by induction,

that x1 + x2 + · · ·+ xn > g+ x1x2
g

+ x3 + · · ·+ xn ≥ g+ (n− 1)g = ng and we are done. I

have to emphasize and bring it to the attention of the reader that the main reason which
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makes Karamzadeh’s proof so effective is because the inequality, a ≤ x ≤ b is stated in

the form of “if, and only if”, by him, and it is observed to be equivalent to that useful

unprecedented statement which consists of just one inequality, namely, a+ b ≥ x+ ab
x

. To

me Karamzadeh’s proof of the AM-GM inequality contains a salient feature, which seems

to have been even overlooked, and not emphasized on, in [21] and [2]. It is so conspicuous

that I cannot help bringing it up to the attention of the reader, and that is as follows: as

we all know we may write −a ≤ x ≤ a equivalent to a single inequality |x| ≤ a, where

a is a positive real number, conventionally. Surprisingly, Karamzadeh observes that the

two inequalities a ≤ x ≤ b, where a, x, b are positive real numbers, is equivalent to the

single inequality a+ b ≥ x+ ab
x

, by thinking mathematically in the form of “if, and only

if”, and not conventionally, see [17]. This is important from historical and mathematical

education perspective, because rarely inequalities are presented in the form of “if, and

only if”, see [17].

Let us conclude our discussion about this inequality with the comments which follows.

We all know that there are not many results in mathematics which receive different

proofs from different authors. These results are mainly elementary. One may ask why

these authors should bother to give these different proofs to these elementary results? In

my opinion it is because certainly these are some basic results and they play important

roles in the learning of mathematics and have more chances to be appeared in the future

textbooks. Especially, if a proof is simple enough and uses elementary tools it is more

likely to get the attention of the younger kids and their teachers at school too. This is

naturally a good way for introducing good mathematics to younger generations as early

as possible. Again, I do believe the above inequality with Karamzadeh’s proof is quite

ready to be inserted in a suitable school textbook.

4. Karamzadeh’s three arbitrary circles theorem vs. Johnson’s three circles

theorem

Let us first quickly recall Johnson’s three circles theorem. Roger Johnson in 1916

published a paper in The American Mathematical Monthly under the title “A Circle

Theorem” in which he proved if three equal circles pass through the same point, then

the circle which passes through their other three points of intersection has also the same

radius as these circles. Before rewriting the above theorem with some notations, let us
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borrow the next comment from [11, P. 4], about this theorem, to see how it is considered

to be as an unexpected worthwhile discovery of elementary geometric theorem in the last

century. “In twentieth century one does not hold out much hope that there remain to be

discovered really pretty theorems at the most elementary level of geometry. However, the

American geometer Roger Johnson seems to be the first to come across the above theorem

which is within the reach of students at high school taking a first course in Euclidean

geometry”. Concerning the latter comment, I couldn’t help adding the comment that

follows which is important from the mathematics historical points of view. Gheorghe

Titeica (publishing as Georges Tzitzeica, see [31]) was a great Romanian geometer who

enthusiastically worked to help and encourage the school kids in Romania to learn and

love geometry. It is said in a meeting in 1908 while he was busy doodling and amused

drawing circles with a five lei coin, accidentally discovered a result which was later named

Titeica 3 circles problem (5 Lei problem) and proposed it the same year at a competition

organized by Romanian Mathematical Gazette. This is the same theorem as Johnson’s

three circles theorem above which was rediscovered independently by Johnson 8 years

later than Titeica, in 1916. Let us, before stating the above theorems in the title, bring to

the attention of the reader a saying of Karamzadeh which is related to the above discovery

of Titeica, too, namely, “ mathematics is well-defined doodling, and this doodling is never

complete unless it can be shared by laymen”, see [17, footnote].

Titeica’s 5 Lei problem

Johnson’s three circles theorem. Let the circles A(r), B(r) and C(r) with centers

A,B,C, respectively, and the same radius r pass through a point H and have the second
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points of intersection M,N,P . Then the circle which passes through the latter three points

has the same radius r, too.

There are many different interesting proofs of this theorem in the literature, see [3, 11,

13, 25]. Now let us state Karamzadeh’s theorem in relation to the above theorem.

Karamzadeh’s three arbitrary circles theorem. Let three arbitrary circles with cen-

ters A,B,C pass through the single point H and intersect pairwise in the points M,N,P .

Let HA, HB, HC be the feet of perpendiculars from the point H to the lines BC,AC,AB,

respectively. The triangle 4MNP is similar to the triangle HAHBHC with the ratio of

similarity 2. In particular, if the three circles are equal, then the triangles 4MNP and

4ABC are congruent and their circumcircles are congruent, with the original three too.

Before proceeding any further, let us recall the convention that three collinear points form

a degenerate triangle. In the case of Johnson’s Theorem, 4MNP is never degenerate,

while in the general case, where the three circles need not be equal, the corresponding

triangle may be a degenerate triangle.

Karamzadeh used to claim rightly that Johnson’s theorem is a consequence of his the-

orem and, at the same time, his theorem needs no proof at all. However he admits that

the proof in [16] was given apparently because of the editor’s demand for a proof for

the sake of a reader who might be a very young student and a bit wet behind the ears

about circles. What follows is essentially that straightforward proof. Clearly, HA, HB, HC

are the midpoints of HM , HN , and HP , respectively. Hence we have HAHB = 1
2
MN ,
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HAHC = 1
2
MP and HBHC = 1

2
PN , i.e., the triangle 4MNP is similar to the triangle

4HAHBHC with the similarity ratio equal to 2 (clearly, if any of the latter triangles is

degenerate so too is the other one). Now if the three circles are equal then manifestly

the triangle 4HAHBHC is the medial triangle of triangle 4ABC. This means that both

triangles 4ABC and 4MNP are twice as large as the triangle HAHBHC , i.e., the former

two triangles are congruent which in turn it implies that their circumcircles are congruent

too. Clearly the circumcircle of the triangle 4ABC has the point H as its center, i.e.,

its radius as well as that of the circumcircle of the triangle 4MNP is the same as the

original three and hence we are done.

Although it seems we have written a few lines for its proof, however as Karamzadeh once

admitted the proof of his theorem is nothing but using the classical and trivial fact be-

longing to the era of Euclid, namely, if two circles intersect in two points, then the line

through their centers is the perpendicular bisector of the common chord. He also believes

that when a fact is not stated in its general form, usually one might be misled toward

finding a proper proof. For example, one may compare the trivial and natural proof of

Karamzadeh’s theorem above with various proofs of Johnson’s theorem in the literature

to notice the difference, see the proofs in the list of references in [16] and, in particular,

the first one in [11, P. 18] and the proof in [33, Chapter 10] which are in the same vein.

Let us examine more closely some part of the latter proof for its excellent ideas and ex-

planations which matters a lot in problem solving and in mathematics in general. Polya

for introducing “The coming of the idea” chooses Johnson’s theorem for his discussion on

how to get an idea for its proof. He tries to reconstruct a sequence of excellent ideas that

led to its proof. In the configurations, in which he draws, he encounters many rhombi

(note, these are also called rhombuses or equilateral quadrilaterals). He even encounters

with the projection of of the 12 edges of a parallelepiped and admits that the theorem is

proved surprisingly by artistic conception of a plane figure as the projection of a solid (i.e.,

the proof uses notions of solid geometry). He then hopes that this is not a great mistake,

otherwise it is easily redressed. We believe in that case it might be redressed easily and

also we admit that he presented very attractive personal view points and rare ideas before

reaching the final stage of the proof. I must confess I enjoyed most of his comments in

[33, Chapter 10], especially his comment that says, ideas come when they want to come,

not when we want them to come, and waiting for ideas, is gambling. However, in my
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opinion, with all due respect to him (note, Polya is admired by many authors, including

myself) his choice of taking Johnson’s theorem as an example to discuss and present his

great ideas for its proof, was not perhaps a good choice. Because as we noted above the

proof of this theorem needed only simple ideas belonging to the era of Euclid, i.e., no fuss,

no muss. Finally, we couldn’t help concluding our discussion, about Johnson’s theorem,

with recalling the next interesting consequence of this theorem, see [11]. If we consider

the incircle of a triangle 4ABC as the circle of an inversion (note, its center, i.e., the

incenter of the triangle is taken to be the center of this inversion and the square of the

inradius is taken to be the constant of the inversion). Then clearly under this inversion

each side goes into a circle which passes through I, the incenter of the triangle and is

tangent to both the side and the incircle of the triangle. Hence the three inversions of

the sides, which are three circles, pass through I and have the same radius, because their

diameters are the inradius of the triangle. Hence these three circles satisfy the first part

of the statement of Johnson’s three circles theorem. Now since the circumcircle of the

triangle goes through vertices and each vertex lies on two sides we infer the inversion of

the circumcircle must be the circle which goes through the intersection points of the latter

three circles except I. In sum, we may say the four circles which are the inversions of

the sides and the circumcircle of the triangle have the same radius. One last word: if we

carefully draw this triangle with all these mentioned circles then we can naturally see the

verity of Johnson’s three circle theorem in this configuration, i.e., as the old adage rightly

says, a picture is worth a thousand words. This can also be considered as a visual proof

of Johnson’s three circles theorem.

5. The full story of the shortest possible solution in the history of the

solutions of the official problems of the IMOs and Karamzadeh’s role in

that solution

Let me first give my reasons for dealing with the above topic in this article. I have to

first emphasize that the above ordinary problem which has received the shortest possible

solution so far among all the IMO problems from the beginning of the International

Mathematical Olympiad (i.e., from 1st IMO 1954 Romania until now) by no means is

comparable with other classical problems or results in this article, as far as mathematics

is concerned. However, in the next few lines I am going to write about it for the sake
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of the oral history of mathematics in our country and as the title shows it is somehow

related to Karamzadeh too. Before writing this article and some of my recent articles,

see [28] and [29], I had to read [7], [27] and some other articles by Karamadeh. In

[7, P. 51], I encountered a peculiar title “The shortest proof in the history of IMO”.

Although I had read the book before, but this time I had to pay a close attention to

the details. That section of the book starts with a problem which was among the six

problems of, 32nd IMO 1991, held in (Sigtuna, Sweden). Incidentally, the problem which

was proposed by France, is essentially as follows (note, although the statement of the

problem in [7], is more general but without referring it to Figure 1, it is evident, however,

it is correctly stated here). Take a point inside a triangle 4ABC and join it to the

vertices of the triangle. Show that among the six angles formed at the vertices, there are

two of them (i.e., one among the angles α1, β1, γ1, and the other one among the three

other angles, in Figure 1) which are less than or equal to 30◦, see [7, P. 51-53], to see a

short story about this problem and how might the statement of this problem is guessed.

Figure 1

Let me digress for a moment and recall

what follows from a recent conversation

with Karamzadeh concerning the previous

peculiar title (note, as I mentioned above I

wanted to learn the details). The original

solution of the problem was a three page

solution. At first, as Karamzadeh remem-

bers, this was a drawback for the problem

to be selected by the Jury, consisting of the

team leaders of the participating countries, as one the six problems for that contest. He

said: we and some other leaders were interested in that problem for the sake of our stu-

dents’ tastes for geometric questions. Therefore, before the final meeting of the jury, we

had a private meeting with those leaders who were pro geometric problems and discussed

our strategy for the final jury meeting. However, apparently there was an unwritten rule

which could increase the possibility of the selection of the problem in the final meeting of

the jury, with such a drawback. And that is, if anyone of the leaders or deputy leaders

can give a proper and shorter solution before making the final decision, by the jury, then

this might help for that particular problem to be selected as one of the final six problems.
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In [27, P. 52], Karamzadeh claims that he had found such a short solution which is less

than of half of page and this helped the problem to be finally selected. He also claims that

the team leader of Spain, F. B. Rosado, who was a member of that private meeting, has

co-authored a book containing some problems in Combinatorics, Algebra, and Geometry,

has inserted his solution in that book and has sent him a copy of the book, with a written

kind message inside the book. But unfortunately because of having a disorderly library

he couldn’t find the book in his library, see [7, P. 52]. Suddenly, it occurred to me the

idea that I could suggest my help for finding that book in his library. I did that and he

happily accepted. But while laughing he said it would be like “looking for a needle in a

haystack”, because books and journals are scattered everywhere in my library even there

are some on the ground, on the bed, under my pillows, on the sofas, etc. I said OK, I

can manage it by myself. Anyway, one day I went to his place and after two or three

hours of searching, I found the book on a shelf among the many old issues of American

Mathematical Monthly and Mathematical Gazette. Now before dealing with the solution

of this problem, let me first recall the next two theorems which are related to the solutions

of the problem and also to my next comments.

Theorem 5.1. (Erdös-Mordel Theorem). If O is a point inside a triangle 4ABC and

x, y and z are the lengths of three perpendiculars to the sides of the triangle, then OA +

OB +OC ≥ 2(x+ y + z).

Theorem 5.2. If a, b, c and S are the side lengths and the value of the area of a triangle

4ABC, then a2 + b2 + c2 ≥ 4
√

3S.

This theorem is apparently discovered by Vitzenbeck in Math.Z. 1919, and then in

28 years later rediscovered by Finsler and Hadwiger in Comm. Math. Hel, see [27, P.

84], to see different proofs of this inequality and how mathematicians invent inequalities.

Incidentally, in the first IMO 1954, in Romania, this theorem was among the six problems

of the contest. Whereas the problems which are to be presented as questions at any

contest for the evaluation of the contestants are supposed to be original, otherwise it

wouldn’t be a fair contest. Karamzadeh who has given the latter comments also claims

non-original problems are appeared among the six problems of some later IMO contests,

too. Karamzadeh used to introduce almost all the important theorems and problems

in elementary mathematics in his training classes for the selected IMO students of our
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country for many consecutive years, including the above theorems. None of these results

have ever appeared, in the Farsi literature, before his introduction of these results in

those classes. Of course, some of these results have later appeared in some books and

articles in Farsi. I just wanted to remind the reader and emphasize the importance of

the role of those training sessions for the IMO students not only for the preparation of

those limited number of students for the IMO, it has also affected and promoted our

mathematics literature in Farsi, too. Therefore one thing that I have learned about

him, which I did not notice before, while preparing this article, even at the time that I

wrote [28], is the latter important fact. This also persuades me to recall another point

about him that I did not mention in [28]. I should also admit that when one is listening

to him talking about any result in mathematics, he recalls some interesting anecdotes

related to the result so enthusiastically that you wouldn’t notice the passing of the time.

In short, his enthusiasm for mathematics is so strong that is contagious. For example,

see his article “generalization in mathematics” in [27]. Let us now cite his solution of

the above problem (IMO 1991), from [35, P. 115]. Let P to be point inside an acute

triangle 4ABC. Put ∠PAB = α, ∠PBC = β and ∠PCA = γ. Also put x = PA,

y = PB and z = PC and assume that none of the angles α, β and γ are less than

or equal to 30◦ and seek a contradiction. Let S be the area of this triangle. Then we

may write S = 1
2
(cxsinα + aysinβ + bzsinγ) and notice that since all these angles are

greater than 30◦, we immediately infer that S > 1
4
(cx + ay + bz). Consequently, in

view of the second theorem above we have a2 + b2 + c2 >
√

3(cx + ay + bz). Also since

x2 = b2 + z2− 2bzcosγ we infer that x2 > b2 + z2−
√

3bz (note, cosγ <
√
3
2

). Similarly, we

have y2 > c2 + x2 −
√

3cx and z2 > a2 + y2 −
√

3ay and by these three latter inequalities

we get a2 + b2 + c2 <
√

3(cx + ay + bz), which is the desired contradiction. Next, let

us recall Shahram Mohsinipour’s solution, who was as a student a team member of our

country then, see [7, P. 53]. What he claimed as his proof was just this: This is obvious

by Erdös-Mordel Theorem. Karamzadeh once said when we presented this solution to the

Swedish. coordinators, who were responsible for the evaluation of the students’ solutions

and for giving marks for this particular problem, were waiting to see any more details in

Shahram’s solution of the problem. When I explained what shahram means with those

few words, they said OK, but how can we be certain that there is such a theorem. I

claimed I myself used to mention this theorem in my classes during their training sessions
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in Iran, before coming to Sweden. They argued and said sorry that is not a reliable source

for us, we need published books or journals where that theorem is proved. I said OK, you

may search for it in Coxter’s book, Introduction to Geometry, John Wiley. They said OK

we do that and we will let you know about our final decision tomorrow. The next day one

of them came to us admitting that you were right and Shahram will get the full mark for

his solution. Although Rosado, the team leader of Spain in his kind message inside the

book calls Karamzadeh as one of the stars of his book (see Figure 3), but Karamzadeh

modestly admits that Rosado was not aware of Shahram’s solution then, otherwise he

would have also included Shahram’s proof in that book and certainly would mention his

name as the “superstar of the book”. When I later argued with Karamzadeh that if

one is going to write down Shahrama’s solution in detail then we have to write down

similar inequalities and then more or less the two proofs would be of the same length.

He said but we have to notice that in [7, Section 2], I am talking about “unforgettable

proofs”, when one says by Erdös-Mordel Theorem every thing is clear, it means writing

down those necessary inequalities are natural and therefore Shahram’s proof is indeed,

unforgettable, but although my proof might be of the same length however writing the

necessary inequalities to complete the proof is, in no ways, as natural as those in that of

Shahram’s. This is why my proof is not unforgettable as that of Shahram’s. I repeated,

but anyway you had both a direct and an indirect role in that shortest solution because,

after all it was you who introduced Erdös-Mordel theorem and many other important

results to our selected IMO students and, in particular, to Shahram, in their training

classes. While was walking away with a smile on his face, he shrug it off as though it

was his natural duty. Later, he said but we should all admit, by invoking Erdös-Mordel

Theorem for solving that particular problem by Shahram, the statement of that problem

may be recorded naturally as an immediate corollary of the theorem.

6. A century old mystery of Morley’s Theorem is finally resolved by

Karamzadeh!

Let us first recall a statement for the above theorem. Let the adjacent trisectors of a

triangle 4ABC meet at the points X, Y, Z as in Figure 2(B). Then the triangle 4XY Z
is called the Morley’s triangle of triangle 4ABC. Frank Morley an English-American
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mathematician while working on a problem in algebraic geometry came across the follow-

ing incredible theorem, see [20].

Morley’s Theorem (1899). The Morley’s triangle of every triangle is equilateral.

My motivation for writing this part, in the first pace, is to claim with emphasis and

without any hesitation that Karamzadeh has transformed Morley’s Theorem, which was

notorious in the last century for being mysterious, into such a simple theorem that can

be presented to our school kids with least possible elementary tools, so that any other

way for presenting it may use less elementary tools. Also I have recently came across a

comment in a new book [32] which rebukes a claim by, M. Lange, a well-known logician,

in [22, p. 253]. Lange while studying Morley’s Theorem notes how this theorem is often

called “Morley’s Mystery” or “Morley’s Miracle”, even though it has been re-proved over

and over again many times in many different ways by some first rate mathematicians.

For Lange the mystery, as claimed in [32], tied to there being no explanatory proof of

the theorem. However, the author in [32], in order to refute this claim of Lange, says

at least one mathematician, namely, Karamzadeh, has shown that there exists a proof

which is completely explanatory, see [32, p. 41-43]. There is also another author, see [5,

p. 84], who admires this explanatory proof of Karamzadeh, too. Indeed, the author in

[32], emphasizes that the reason why Karamzadeh has succeeded resolving this so-called

mystery in the theorem is because with the help of his Bisector proposition, which will

be stated, shortly, see also [18]), he has stated Morley’s Theorem for the first time in the

history of this theorem, see [18], in the form of “if, and only if”. I must bring to the

attention of the reader that stating the results in the form of “if, and only if” was one

of the main reasons that Karamzadeh got attracted to the subject of C(X), see [29, p.

155]). The author of [32, p. 43], continues to say rightly, more generally we can see how

this sort of biconditional (i.e., the statement of the theorem in the form of “if, and only

if”) allows for its explanatory proof. Let us before going any further recall Karamzadeh’s

Bisector Proposition which seems to be have been overlooked since Euclid time, for its

natural proof see [18].

Karamzadeh’s Bisector Proposition. Suppose that A is a point inside the angle ∠xOy

and B,C are two points on the arms Ox and Oy, respectively (Figure 2(A)). Then if any
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two of the following hold, so does the third.

(1) A lies on the bisector of the angle ∠xOy.

(2) AB = AC.

(3) Angles ∠OBA and ∠OCA are either equal or supplementary.

The above proposition is in fact in the form of “if, and only if”, for (1),(2) hold if, and

only if, (1),(3) hold, or if, and only if, (2),(3) hold. Before the publication of Karamzadeh’s

articles related to Morley’s Theorem, see [20], [18] and [8], many authors believed that

among the existing proofs of this theorem the proofs of John Conway and that of D.J.

Newman were the simplest ones, especially the former one. I have to remind the reader

that the Newman’s proof uses trigonometry and he somehow expressed his feeling that

he was not happy with his own proof as well as with the other existing proofs of the

theorem. As with Conway’s proof, there is some unexplained element in the proof, namely,

introducing the angles ∠1 = ∠4 = 60 + γ, ∠2 = ∠5 = 60 + β, and ∠3 = ∠6 = 60 + α,

without any explanations, see Figure 2(B). Incidentally, Newman’s proof applies these

angles also without any explanations. Karamzadeh believes that the latter two authors

had perhaps obtained the values of these angles via trigonometry without mentioning

it. We may bring to the attention of the reader that there were already proofs prior

to Conway’s and Newman’s whose authors had obtained the values of the above angles

by trigonometry, see for example, Banhoff’s proof in https://www.cut-the-knot.org/

triangle/Morley/BankoffProof.shtml. Incidentally, most of the backwards proofs of

Morley’s Theorem make use of the above values without any explanations, for example

see B. Bollobas’s proof in the latter reference and also that of Roger Penrose’s, see the

reference list of [20]. It was, indeed, Karamzadeh who for the first time by invoking his

Bisector Proposition geometrically proved that Conway’s assignment of the above three

pairs of angles in his proof and therefore in other similar proofs are inevitable and quite

explanatory, see [18]. Let us go back to Conway and Newman and make some comments

about the simplicity of their proofs. By modifying Conway’s proof, Karamzadeh in [18],

claims rightly that this modified proof which eschews the similarity is clearly simpler

than Conway’s, however at the same time he admits that this modified proof should also

be called Conway’s proof. And he emphasizes that this modified proof is perhaps the

simplest possible proof for the time being at that time. However, he also predicts and

https://www.cut-the-knot.org/triangle/Morley/BankoffProof.shtml
https://www.cut-the-knot.org/triangle/Morley/BankoffProof.shtml
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(a) (b)Figure 2

reminds the reader that one cannot be sure if the proof remains the simplest for a long

time in the future. His resourcefulness in this regard paid off and it did not take before

long that the latter prediction came true. Indeed, Karamzadeh in [20], has manifestly

shown with some reasoning that the proof in [8], is the simplest possible and remains so

in the literature for ever. Incidentally, his Bisector Proposition enables him to present

Morley’s Theorem in the form of “if, and only if” for the first time in the history of this

theorem. This makes the proof of this theorem quite explanatory and at the same time

also reveals what is the possible mystery in this theorem and shows that, again by using

Bisector Proposition, the theorem is no longer mysterious, i.e., the mystery is resolved.

Due to the significance of the revealment of this mystery which is clearly explained in [20],

we also re-emphasize on it by recalling this mystery. By considering the configuration

above we notice that the values of angles of triangles 4CYX, 4AZY and 4XY Z are

determined without any work. If we assume the Morley’s triangle in the configuration

is equilateral then it remains to find the values of the angles of the other three triangles

inside the original triangle 4ABC, in the above configuration. If we can find the values

of angles ∠1, ∠2, ∠3, ∠4, ∠5, and ∠6, we are through. Similarly to [20, P. 300] one

can easily write down the next six equations. ∠1 + ∠2 = 180 − α, ∠2 + ∠3 = 180 − γ,

∠3 + ∠4 = 180 − β, ∠4 + ∠5 = 180 − α, ∠5 + ∠6 = 180 − γ and ∠6 + ∠1 = 180 − β
. Manifestly, these equations are not independent and any one of these equations may

be deduced from the other five. This means in fact we have five equations with six
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unknowns which usually have not a unique solution. However, naturally the values of

these unknowns must be unique. Hence we need at least another independent equation.

Unfortunately, this cannot be easily inferred from the above configuration. This is where

the hidden fact, of Bisector Proposition, in the configuration enters the scene and provide

us with extra information, namely, ∠1 = ∠4, ∠2 = ∠5 and ∠3 = ∠6. Consequently,

the later three pairs of equalities hold if, and only if, the Morley’s triangle 4XY Z is

equilateral, thanks to Bisector Proposition. Incidentally, this observation together with

Bisector Proposition provide the simplest possible proof of Morley’s Theorem in [8], which

as claimed above remains the simplest for ever, see [20] for details. And as Karamzadeh

has already emphasized in [20], the hidden fact, of Bisector Proposition, in the above

configuration is the mystery of Morley’s triangle. It seems we had to wait all these years

for this elegant Bisector Proposition, which has been overlooked since Euclid time, to

appear, to provide for us a manifest short geometric proof of Morley’s theorem and at

the same time to resolve its so-called mystery, too. As for Newnan’s proof, first we prefer

to quote his useful and honest comments about Morley’s Theorem prior to his proof

in https://www.cut-the-knot.org/triangle/Morley/newman.shtml. “One of the sad

things about the current philosophy of mathematical education is the avoidance of plane

geometry. Today’s generation, and perhaps their parents as well have not heard of marvels

like the 9-point circle, Descartes’s theorem, Ceva’s Theorem, or the marvel of marvels,

the Morley’s triangle. As shown in Figure 1, one takes an arbitrary triangle and trisects

its angles, obtaining three intersection points. These form the small triangle inside the

starting triangle. This small interior triangle is far from being arbitrary, however, Morley’s

great discovery (1899) being that it is always equilateral! When I read, or rather tried

to read, Morley’s proof of this startling theorem, I found it absolutely impenetrable. I

told myself that maybe in future years I would return and then understand it. I never

succeeded in that, and even when I read the much simpler proof based on trigonometry,

or the fairly simple geometric proof due to M. T. Naraniengar ( 1907), there was still too

much complexity and lack of motivation. (A series of lucky breaks!) Were we to give up,

forever, understanding the Morley Miracle? Or are we failing because we are asking too

little? After all, Morley’s theorem states that in Figure 1, the inner triangle always will

be equilateral. The reason that all the proofs seem to be so difficult and unmotivated

is probably because Morley’s theorem is really only half the story. The full picture is

https://www.cut-the-knot.org/triangle/Morley/newman.shtml
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in Figure 1 and this tells the whole story and indeed proves itself! (This happens often

in induction proofs: The fuller statement is easier to prove than the restricted one.)”

(note, Figure 1, in the previous comment is the figure in his proof in https://www.

cut-the-knot.org/triangle/Morley/newman.shtml). Newman was a great problem

solver and his very elementary proof of the prime number theorem is appreciated by many

mathematicians, (note, I learned this from Karamzadeh, see [27, Acknowledgments]).

By considering Newman’s comments about Morley’s Theorem, one can surely claim if

people like him and geometry lovers like Coxeter were alive today, they would be so

happy to see that the mystery of Morley’s Theorem is finally resolved. I would like to

take this opportunity and conclude my article with the following reminiscence from[4],

about Newman. Before quoting this reminiscence, about Newman, I like to recall an

anecdote which is also related to Newman. Before Karamzadeh’s retirement, once during

our regular slow walking together in the campus of our university, he was recalling the

next peculiar problem (note, since he was aware of my interest in set theory his usual

choice for these kind of problems was in set theory). Let f(x, y) be a function from R2

into R2. Suppose that this function is a polynomial in x for each fixed y, and it is a

polynomial in y for each fixed x, show that f(x, y) must be a polynomial in x and y.

He said that this problem is due to D.J. Newman, who has also given a very elementary

proof to the prime numbers theorem. He continued by saying that he was a great problem

solver like Erdös (note, that was the first time I heard of the name D.J. Newman and

about his elementary proof of the prime numbers theorem). From among rather many

of the Newman’s colleagues’ and his student’s reminiscences including John Nash’s, see

[4], I have chosen Doron Zeilberger’s on purpose, which is related to Newman’s proof to

Morley’s Theorem, too. “Don Newman was a great mathematician, but he was even a

greater problem-solver. Problem solving is not the same as math, and I am sure that

if Don would have been less addicted to problem-solving, he would have achieved much

more in “regular” mathematics, but of course, he didn’t care; he just wanted to have fun.

To cite just a few of his masterpieces, his proof of Morley’s Theorem and his solution of

the 12-coin problem are masterpieces worth many “serious” theorems and proofs. I met

Don for the first time when I gave an interview talk at Temple, at the beginning of 1990.

To illustrate my talk, I put on the blackboard a recent Monthly problem that was meant

to illustrate
∞∑
n=0

1
n!(n4+n2+1)

= e
2

but Don stole my thunder: he did it on the spot, in less

https://www.cut-the-knot.org/triangle/Morley/newman.shtml
https://www.cut-the-knot.org/triangle/Morley/newman.shtml
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than a minute. Don was not big on e-mail, so often I got e-mail from John Nash, who

really adored Don, to print out and give to Don”.

One last word regarding Karamzadeh’s work on Morley’s Theorem: One may certainly

claim that even though this theorem is in the list of 100 most important theorems in

mathematics, see [20], however is not studied at school in any country officially yet, see

the above comments of Newman. Now as we notice, Karamzadeh has transformed this

theorem in a way that it can be easily taught to our students at school in their early ages.

Why not inserting it in a proper geometry course at school in Iran with Karamzade’s

approach? To be the first country in the world for doing that. Of course I must inform

the reader that, his work is already appeared in a geometry textbook in Farsi, see [30].

However due to its history, it would be more appropriate if it is also a part of our geometry

course at school for a record, where also the students naturally encounter the concept of

trisectors (note, Morley’s Theorem is perhaps the only theorem in mathematics that deals

with trisectors and it is also a proper theorem in which the question of impossibility of

trisecting, using a ruler and compass only, of any given angle might naturally be brought

up for the students) .

Figure 3. (The handwritten note of F. B. Rosado on the first page of his book)
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