[1] Castillo-Chaves, C. and Thieme, H. R., (1995). Asymptotically autonomous epidemic models. Mathematical population dynamics: analysis of heterogeneity. 33-50.
[2] Coombs, D., (2003). Optimal viral production. Bull. Math. Biol. 65. 1003-1023. doi: 10.1016/S0092-8240(03)00056-9.
[3] Gilchrist, M. A., Coombs, D. and Perelson, A. S., (2004). Optimizing within-host viral fitness: in-fected cell lifespan and virion production rate. J. Theor. Biol. 229. 281-288. doi:10.1016/j.jtbi.2004.04.015.
[4] Hale, J. K and Verduyn Lunel, S. M., (1993). Introduction to functional differential equations. New York:Springer-Verlag.
[5] Komarava, N. L., (2007). Viral reproductive strategies: how can lytic viruses be evolutionarily competitive? . J. Theor. Biol. 249. 766-784. doi: 10.1016/j.jtbi.2007.09.013.
[6] Nelson, P. W., Gilchrist, M. A., Coombs, D., Hyman, J. M. and Perelson, A. S., (2004). An agestructured model of HIV infection that allows for variation in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 1. 267-288. doi: 10.3934/mbe.2004.1.267.
[7] Rong, L., Feng, Z. and Perelson, A. S., (2007). Mathematical analysis of age-structured
HIV-1 dynamics with combination antiretroviral therapy. J. Appl. Math. 67. 731-756. doi:10.1137/060663945.
[8] Smith, H. L., (1995). Monotone dynamical systems—An introduction to the theory of competitive and cooperative systems. AMS. Providence