An accurate and straightforward method for solving optimal control problems using the second-order finite difference formula

Document Type : Original Paper

Authors

1 Department of Electrical Engineering, University of Bojnord, Bojnord, Iran

2 Department of Mathematics, Faculty of Basic Sciences, Sahand University of Technology, Tabriz, Iran

3 Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran

Abstract

In this paper, a simple and highly accurate approximate method for solving optimal control problems (OCPs) is presented. In this method, initially, by using the necessary optimality conditions based on the Pontryagin's maximum principle, the given OCP is transformed into a two-point boundary value problem (BVP). Then, by applying a second order finite difference formula, the resulting BVP is discretized, and a system of algebraic equations is formulated. Convergence analysis of the proposed method is also discussed, and matrix formulations are provided for ease of implementation. The numerical results obtained in this study are compared with some other methods, demonstrating the high accuracy, speed, and efficiency of the proposed method for solving both linear and nonlinear OCPs.

Keywords

Main Subjects


[1] Beard, R.W., Saridis, G.N. and Wen, J.T., 1997. Galerkin approximations of the generalized HamiltonJacobiBellman equation. Automatica, 33(12), pp. 2159–2177. doi:10.1016/S00051098(97)001283.
[2] Bellman, R., 1952. On the theory of dynamic programming. Proceedings of the National Academy of Sciences of the United States of America, 38(8), pp. 716–719. doi:10.1073/pnas.38.8.716.
[3] Bonnans, J.F. and Festa, A., 2017. Error estimates for the Euler discretization of an optimal control problem with firstorder state constraints. SIAM Journal on Numerical Analysis, 55(2), pp. 445–471. doi:10.1137/140999621.
[4] Çimen, T., 2008. Statedependent Riccati equation (SDRE) control: A survey. IFAC Proceedings Volumes, 41(2), pp. 3761–3775. doi:10.3182/200807065KR1001.00635.
[5] Doan, V.D., Fujimoto, H., Koseki, T., Yasuda, T., Kishi, H. and Fujita, T., 2018. Iterative dynamic programming for optimal control problem with isoperimetric constraint and its application to optimal ecodriving control of electric vehicle. IEEJ Journal of Industry Applications, 7(1), pp. 80–92. doi: 10.1541/ieejjia.7.80.
[6] Germani, A., Manes, C. and Pepe, P., 2000. A twofold spline approximation for finite horizon LQG control of hereditary systems. SIAM Journal on Control and Optimization, 39(4), pp. 1233–1295. doi:10.1137/S0363012998337461.
[7] Hajipour, M. and Jajarmi, A., 2018. Numerical solution of the statedelayed optimal control problems by a fast and accurate finite difference θ method. Communications in Nonlinear Science and Numerical Simulation, 55, pp. 265–276. doi:10.1016/j.cnsns.2017.07.017.
[8] JabbariKhanbehbin, T., Gachpazan, M., Effati, S. and Miri S.M., 2022. Shooting continuous RungeKutta method for delay optimal control problems. Iranian Journal of Numerical Analysis and Optimization, 12(3), pp. 680–703. doi:  ijnao.2022.78108.1166.
[9] Jajarmi, A. and Baleanu, D., 2018. Optimal control of nonlinear dynamical systems based on a new parallel eigenvalue decomposition approach. Optimal Control Applications and Methods, 39(2), pp. 1071–1083. doi:10.1002/oca.2397.
[10] Jajarmi, A., Dehghan Nayyeri, M. and Saberi Nik, H., 2016. A novel feedforwardfeedback suboptimal control of linear timedelay systems. Journal of Complexity, 35, pp. 46–62. doi:10.1016/j.jco.2016.02.001.
[11] Jajarmi, A. and Hajipour, M., 2017. An efficient finite difference method for the time‐delay optimal control problems with time‐varying delay. Asian Journal of Control, 19(2), pp. 554–563. doi:10.1002/asjc.1371.
[12] Jajarmi, A. and Hajipour, M., 2017. An efficient parallel processing optimal control scheme for a class of nonlinear composite systems. Acta Mathematica Scientia, 37(3), pp. 703–721.doi: https://doi.org/10.1016/S02529602(17)300322.
[13] Manitius, A. and Tran, H., 1986. Numerical simulation of a nonlinear feedback controller for a windtunnel model involving a time delay. Optimal Control Applications and Methods, 7(1), pp. 19–39. doi:10.1002/oca.4660070103.
[14] Marzban, H.R. and Pirmoradian, H., 2018. A direct approach for the solution of nonlinear optimal control problems with multiple delays subject to mixed statecontrol constraints. Applied Mathematical Modelling, 53, pp. 189–213. doi: 10.1016/j.apm.2017.08.025
[15] Marzban, H.R. and Razzaghi, M., 2003. Hybrid functions approach for linearly constrainedquadratic optimal control problems. Applied Mathematical Modelling, 27(6), pp. 471–485.doi:10.1016/S0307904X(03)000507.
[16] Pontryagin, L.S., 1959. Optimal regulation processes. Uspekhi Matematicheskikh Nauk, 14(1)(85), pp. 3–20. URL: http://mi.mathnet.ru/rm7262.
[17] Rudin, W., 1976. Principles of Mathematical Analysis (Vol. 3). New York: McGraw–Hill.
[18] Schwartz, A. and Polak, E., 1996. Consistent approximations for optimal control problems basedon Runge–Kutta integration. SIAM Journal on Control and optimization, 34(4), pp. 1235–1269.doi:10.1137/S0363012994267352.
[19] Shirazian, M., 2023. An iterative Legendre pseudospectral method for suboptimal control of nonlinear control affine systems. Mathematical Communications, 28(1), pp. 153–169.URI: https://hrcak.srce.hr/303396.
[20] Shirazian, M., 2023. Optimal control design for linear timevaryingsystems by interpolated variational iteration method. Journal of Vibration and Control, 29(2122),pp. 4987–4998.doi:10.1177/10775463221127739.
[21] Shirazian, M., 2023. The interpolated variational iteration method for solving a class of nonlinear optimal control. problems. Iranian Journal of Numerical Analysis and Optimization, 13(2), pp. 224-242. doi: 10.22067/ijnao.2022.77393.1158.
[22] Shirazian, M. and Effati, S., 2012. Solving a class of nonlinear optimal control problems via he’svariational iteration method. International Journal of Control, Automation and Systems, 10, pp. 249–256. doi:10.1007/s125550120205z.
[23] Tang, G.Y., 2005. Suboptimal control for nonlinear systems: a successive approximation approach. Systems & Control Letters, 54(5), pp. 429–434. doi:10.1016/j.sysconle.2004.09.012.
[24] Wang, X., Peng, H., Zhang, S., Chen, B. and Zhong, W., 2017. A symplectic pseudospectral method for nonlinear optimal control problems with inequality constraints. ISA Transactions, 68, pp. 335–352. doi:10.1016/j.isatra.2017.02.018.