Generalized inverses and duggal transformations of conditional operators

Document Type : Original Paper

Authors

1 Department of Mathematics, Lorestan University, Khorramabad, Iran

2 Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran

Abstract

In this paper, we first calculate the measure theoretic Duggal transform of Lambert conditional operators. Next, by using the polar decomposition of operators, we obtain Moore-Penrose inverse $(\widehat{T}^p)$ and Drazin inverse $(\widehat{T }^d)$ of these types of operators, and then we will check the relationships between these types of inverses for the Duggal transformation. Finally, by using various examples including matrix representation, we will show the correctness of the obtained results.

Keywords

Main Subjects


[1] Aiena, P. and Triolo, S., 2016. Fredholm spectra and Weyl type theorems for Drazin invertible operators. Mediterranean journal of mathematics, 13(6), pp. 4385­4400. doi: 10.1007/s00009­016­0751­3
[2] Amiri, P. and Samei, M.E., 2022. Existence of Urysohn and Atangana–Baleanu fractional integral
inclusion systems solutions via common fixed point of multi­valued operators. Chaos, Solitons and
Fractals, 165, pp. 112822. doi: 10.1016/j.chaos.2022.112822
[3] Aponte, E., Macias, J., Sanabria, J. and Soto, J., 2021. B­Fredholm spectra of Drazin Invertible operators and applications. Axioms 10(2), pp. 111. doi: 10.3390/axioms10020111
[4] Ben­Israel, A. and Greville, T.N.E., 2003. Generalized inverses: theory and applications. Second Ed.,Springer.
[5] Cvetković Ilić, D.S. and Wei, Y., 2017. Algebraic properties of generalized inverses. Developments
in Mathematics 52, Springer.
[6] Djordjević D.S. and Dinˇcić, N.C., 2010. Reverse order law for the Moore–Penrose inverse. J. Math.Anal. Appl., 361, pp. 252­261. doi: 10.1016/j.jmaa.2009.08.056
[7] Foias, C., Jung I., Ko, E. and Pearcy, C., 2003. Complete contractivity of maps associated with the Aluthge and Duggal transforms. Pacific J. Math., 209, pp. 249­259. doi:10.2140/pjm.2003.209.249
[8] Harrington, D. and Whitley, R., 1984. Seminormal composition operators. J. Operator Theory, 11,pp. 125­135.
[9] Hoover, T., Lambert, A. and Quinn J., 1982. The Markov process determined by a weighted composition operator. Studia Math. (Poland), LXXII, pp. 225­235.
[10] Houas, M., Samei, M.E., Santra, S. and Alzabut J., 2024. On a Duffing­type oscillator differential
equation on the transition to chaos with fractional q­derivatives, Journal of Inequalities and Applications, 2024(1), pp. 12. doi: 10.1186/s13660­024­03093­6
[11] Jabbarzadeh, M.R. and Sohrabi, M., Moore­Penrose­Dragomir Quasi­Mean For Conditional Operators. ( In press).
[12] abbarzade, M.R., 2010. A conditional expectation type operator on L p spaces. Oper. Matrices, 4(3),pp. 445­453. doi: 10.7153/oam­04­24
[13] Jabbarzadeh, M.R., Emamalipour, H. and Sohrabi, M., 2018. Parallelism between Moore­Penrose inverse and Aluthge transformation of operators. Appl. Anal. Discrete Math., 12, pp. 318­335. doi:10.2298/AADM161026005J
[14] Jabbarzadeh, M.R. and Sohrabi, M., 2017. Moore­Penrose inverse of conditional type operators. Oper. Matrices, 11, pp. 289­299. doi: 10.7153/oam­11­19
[15] Lambert, A., 1986. Hyponormal composition operators. Bull. London Math. Soc., 18, pp. 395­400.
[16] Morrell, B.B. and Muhly, P.S., 1974. Centered operators. Studia Math., 51, pp. 251­263.
[17] Moor, E.H., 1920. On the reciprocal of the general algebraic matrix. Bull. Amer. math. Soc., pp.
394­395.
[18] Penrose, R., 1955. A generalized inverse for matrices. Proc. camb. Philh. Soc., pp. 406­413. doi:
10.1017/S0305004100030401
[19] Rao, M.M., Conditional measure and applications, Marcel Dekker, New York. 1993.
[20] Singh, R.K. and Manhas, J.S., 1993. Composition operators on function spaces, North­ Holland.
[21] Sohrabi, M., 2023. Drazin inverse of Lambert conditional type operators. Rendiconti del Circolo Matematico di Palermo Series 2., 72(1), pp. 605­619. doi: 10.1007/s12215­021­00693­9
[22] Sohrabi, M., 2022. Relationship between Cauchy dual and Drazin inverse of conditional type operators. Bulletin des Sciences Mathématiques, 176, pp. 103­119. doi:10.1016/j.bulsci.2022.103119