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Abstract. In this article, we study modules that satisfy the double infinite chain con-

dition on uncountably generated submodules, briefly called u.c.g.−DICC modules. We

show that if a quotient finite dimensional module M satisfies the double infinite chain

condition on uncountably generated submodules, then it has Krull dimension. We study

submodules N of a module M such that whenever M
N satisfies the double infinite chain

condition so does M . Moreover, we observe that an α-atomic module, where α > ω1

is an ordinal number, satisfies the previous chain condition if and only if it satisfies the

descending chain condition on uncountably generated submodules.

1. Introduction

The double infinite chain condition was introduced by Contessa for modules over com-

mutative rings (briefly DICC-modules); see [4, 5, 6]. Osofsky [18] extended the concept

of DICC to objects in AB5 category. She characterized DICC objects in this category

and obtained some noncommutative generalizations. Karamzadeh and Motamedi [13]

undertook a systematic study of the concept of α −DICC modules. Later, Rahimpour

[19] studied modules that satisfy the double infinite chain condition on finitely generated

submodules, denoted by f.g. − DICC-modules. Davoudian [10] studied modules that
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satisfy the double infinite chain condition on nonfinitely generated submodules, denoted

by n.f.g.−DICC-modules. An R-module M is called countably generated if there exists

a countable subset A of M such that < A >= M ; otherwise, M is uncountably generated.

We extensively studied modules with the chain condition on uncountably generated sub-

modules, see [9]. In this article we study modules that satisfy the double infinite chain

condition on uncountably generated submodules, briefly called u.c.g. − DICC modules.

We show that if a quotient finite dimensional module M satisfies the double infinite chain

condition on uncountably generated submodules, then it has Krull dimension. We also

observe that if N is of finite length submodule of M and M
N

is an u.c.g.−DICC module,

then so is M . If an R-module M has the Noetherian dimension and α is an ordinal

number, then M is called α-atomic if n-dimM = α and n-dimN < α for all proper

submodules N of M . An R-module M is called atomic if M is α-atomic for some ordinal

α; see [14] (note, atomic modules are also called conotable, dual critical, and N -critical

in some other articles; see for example [17, 1] and [3]). We also observe that an α-atomic

R-module M is u.c.g.−DICC if and only if M satisfies the descending chain condition on

uncountably generated submodules, where ω1 is the first uncountable ordinal number and

α > ω1 is an ordinal number. Throughout this paper R will always denote an associative

ring with a nonzero identity and M a unital R-module. The notation N ⊆ M (resp.

N ⊂ M) means that N is a submodule (resp. proper submodule ) of M . The reader

is referred to [2, 12, 13, 14], for definitions, concepts, and the necessary background not

explicitly given here.

2. Preliminaries

In this section we recall some useful facts about modules with Krull dimension and

modules with chain condition on uncountably generated submodules. First we recall that,

the concept of Krull dimension of an R-module M , denoted by k-dimM , is the deviation

of the poset of all submodules of M . The codiviation of the poset of all submodules of

M is called Noetherian dimension and denoted by n-dimM .

Let us continue with the following well-known and important result; see [16, Corollary

6] or [14, Proposition 1.1].

Proposition 2.1. An R-module has Noetherian dimension if and only if it has Krull

dimension.
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We need the following result which is also in [14].

Proposition 2.2. Let M ba an R-module. If each proper submodule N of M has Noether-

ian dimension, then so does M and n-dimM ≤ sup{(n-dimN)+1 : N is a proper submodule of M}.

The proof of the next result is similar to the proof of its dual result in [8, Lemma 1.4].

Proposition 2.3. If M is an R-module and for each submodule N of M , either N or M
N

has Krull dimension, then so does M .

It is well known and easy to see that an R-module M satisfies the ascending chain con-

dition (ACC) on finitely generated submodules if and only if M is Noetherian. Dually, M

satisfies the descending chain condition (DCC) on finitely generated submodules if and

only if M is a perfect module. We studied modules with chain condition on nonfinitely

generated submodules, see [7]. An R-module M is called countably generated if there

exists a countable subset A of M such that < A >= M ; otherwise, M is uncountably

generated. In [9], we characterize modules M which satisfy the ascending (resp., descend-

ing) chain condition on uncountably generated submodules (i.e., for any ascending (resp.,

descending) chain N0 ⊆ N1 ⊆ N2 ⊆ ... (resp., N0 ⊇ N1 ⊇ N2 ⊇ ...) of uncountably gen-

erated submodules of M , there exists an integer n such that for each i ≥ n, Ni = Ni+1.

In [15], it is shown that every submodule of module with a countable Noetherian di-

mension is countably generated. Hence, if M has a countable Noetherian dimension or

ω1-atomic, then M satisfies the ascending chain condition (descending chain condition)

on uncountably generated submodules.

We recall that the Goldie dimension of an R-module M , denoted by G-dimM is the

supremum λ of all cardinals k such that M contains the direct sum of k nonzero submod-

ules. Given a cardinal number k, we say k is attained in M if M contains a direct sum

of k nonzero submodules, see [11]. We also recall that by a quotient finite dimensional

module M we mean for each submodule N of M , M
N

has finite Goldie dimension.

We cite the following results from [9].

Proposition 2.4. Let M be a quotient finite dimensional module. If M satisfies the

ascending chain condition on uncountably generated submodules, then n-dimM ≤ ω1,

where ω1 is the first uncountable ordinal number.

Proof. See [9, Proposition 3.2]. �
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Proposition 2.5. Let M be a quotient finite dimensional module. If M satisfies the

descending chain condition on uncountably generated submodules, then it has Krull di-

mension.

Proof. See [9, Proposition 4.1]. �

3. Double chain condition on uncountably generated submodules

In this section, we study modules that satisfy the double infinite chain condition on

uncountably generated submodules, briefly called u.c.g.−DICC modules. Next, we give

our definition of u.c.g.−DICC-modules.

Definition 3.1. An R-module M is said to be u.c.g.−DICC, if given any doubly infinite

chain

... ⊂M−2 ⊂M−1 ⊂M0 ⊂M1 ⊂M2 ⊂ ...

of uncountably generated submodules ofM , there exists an integer k, such thatMi = Mi+1

for each i ≥ k or Mi = Mi+1 for each i ≤ k.

We continue with the following lemma, whose proof is given for the sake of completeness.

Lemma 3.2. If M is an u.c.g.-DICC module, then given any infinite descending chain

N1 ⊇ N2 ⊇ N3 ⊇ ... ⊇ Nk ⊇ ... of uncountably generated submodules of M either Ni

Ni+1

satisfies the ascending chain condition on uncountably generated submodules for all i or

there exists an integer k such that Ni+1 = Ni for each i ≥ k.

Proof. Let Nr

Nr+1
do not satisfy the ascending chain condition on uncountably generated

submodules, for some r. Thus there exists an infinite chain
N ′1

Nr+1
⊂ N ′2

Nr+1
⊂ .... of uncount-

ably generated submodules of Nr

Nr+1
. Thus

... ⊆ Nr+2 ⊆ Nr+1 ⊂ N ′1 ⊂ N ′2 ⊂ ...

is a doubly infinite chain of uncountably generated submodules of M . It follows that

there exists an integer k > r such that Nm = Nm+1, for all m ≥ k. �

The proof of the next lemma is similar to the proof of Lemma 3.2, and it is therefore

omitted.



DOUBLE CHAIN CONDITION ON UNCOUNTABLY GENERATED SUBMODULES 103

Lemma 3.3. If M is an u.c.g.-DICC module, then given any infinite ascending chain

M0 ⊆ M1 ⊆ M2 ⊆ ... of uncountably generated submodules of M either Mi+1

Mi
satisfies the

descending chain condition on uncountably generated submodules for all i, or there exists

an integer k such that Mi = Mi+1 for each i ≥ k.

The proof of the next lemma is elementary and is omitted.

Lemma 3.4. An R-module M is an u.c.g. − DICC-module if and only if for any un-

countably generated submodule A of M either A satisfies the descending chain condition

on uncountably generated submodules or M
A

satisfies the ascending chain condition on

uncountably generated submodules.

Using Lemma 3.6, we give the next immediate result.

Lemma 3.5. If M is an u.c.g. − DICC module, then for each uncountably generated

submodule X of M , either X or M
X

has Krull dimension.

Proof. Let X be any uncountably generated submodule of M . By Lemma 3.4, either

X satisfies the descending chain condition on uncountably generated submodules or M
X

satisfies the ascending chain condition on uncountably generated submodules. Hence, by

Propositions 2.5, 2.4, and 2.1, either X or M
X

has Krull dimension. �

In view of the previous proposition we have the following result.

Proposition 3.6. If M is an u.c.g. − DICC module, then for each proper countably

generated submodule N of M and any uncountably generated submodule X of N either X

or M
N

has Krull dimension.

Proof. Let N be a countably generated submodule of M . If X is an uncountably generated

submodule of N , then in view of Lemma 3.5, we infer that either X or M
X

has Krull

dimension. If M
X

has Krull dimension, then M
N

has Krull dimension; see [12, Lemma 1.1],

(note, M/X
N/X

= M
N

). This implies that for each proper countably generated submodule

N of M and any uncountably generated submodule X of N either X or M
N

has Krull

dimension. �

By considering the above proposition and Proposition 2.5, we are now ready to prove

the following proposition, which is a crucial step towards proving our main result.
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Proposition 3.7. If M is an u.c.g. − DICC module, then for each proper countably

generated submodule N of M either N or M
N

has Krull dimension.

Proof. Suppose that there exists a proper countably generated submodule N ′ of M such

that M
N ′

does not have Krull dimension. We are to show that N ′ has Krull dimension.

If each proper submodule of N ′ is countably generated, then N ′ satisfies the descending

chain condition on uncountably generated submodules and in view of Proposition 2.5 we

get, N ′ has Krull dimension and we are through. Otherwise N ′ has a proper uncountably

generated submodule, X ′ say. In view of Proposition 3.6, we infer that X ′ has Krull

dimension (note, by our assumption M
N ′

does not have Krull dimension). This implies

that any uncountably generated submodule X of N ′ has Krull dimension. Now, let P be

a countably generated submodule of N ′. If P is contained in a uncountably generated

submodule X of N ′, then X and therefore P has Krull dimension; see [12, Lemma 1.1].

Otherwise each proper submodule of N ′

P
is countably generated and this implies that N ′

P

satisfies descending chain condition on uncountably generated submodules. Therefore N ′

P

has Krull dimension, see Proposition 2.5. Thus for each submodule X of N ′, either X or
N ′

X
has Krull dimension; hence, by Proposition 2.3 N ′ has Krull dimension. �

Next, we present our main result of this paper.

Theorem 3.8. Let M be a quotient finite dimensional module. If M is an u.c.g.−DICC
module, then M has Krull dimension.

Proof. It suffices to show that M is satisfied in Proposition 2.3. By Lemma 3.5, we

infer that for each uncountably generated submodule X of M either X or M
X

has Krull

dimension. Now, let N be a countably generated submodule of M . By Proposition 3.7,

we have either N or M
N

has Krull dimension. It follows that for each submodule P of M ,

either P or M
P

has Krull dimension and we are done. �

The next example shows that the converse of the previous theorem is not true in general.

Example 3.9. Let Z be the ring of integers and B be an ω1-atomic Z-module; then the

Z-module M = Z⊕B ⊕B ⊕B has Krull dimension; see [12, Lemma 1.1]. The following

chain

Z⊕B ⊃ 2Z⊕B ⊃ 4Z⊕B ⊃ ...
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of uncountably generated submodules of the Z-module Z ⊕ B shows that it does not

satisfy the descending chain condition on uncountably generated submodules. Since B is

not Noetherian, hence there exits the following chain B1 ⊂ B2 ⊂ B3 ⊂ ... of submodules

of B. Thus the following chain

B1 ⊕B ⊂ B2 ⊕B ⊂ B3 ⊕B ⊂ ...

of uncountably generated submodules of the Z-module B⊕B shows that it does not satisfy

the ascending chain condition on uncountably generated submodules. Since M
Z⊕B ' B⊕B,

we infer that M is not an u.c.g.-DICC module by Lemma 3.4.

It is clear that if an R-module M satisfies the ascending or the descending chain condi-

tion on uncountably generated submodules, then it is u.c.g.−DICC. Also, it is evident

that any DICC module is u.c.g. − DICC, but the converse is not true in general. For

example, it is clear that the Z-module Z ⊕ Zp∞ satisfies the ascending chain condition

on uncountably generated submodules, and thus it is an u.c.g.−DICC-module. Clearly,

Z⊕ Zp∞ is not DICC; see the comment that follows [13, Definition 1.1].

The following result is clear and its proof is omitted.

Corollary 3.10. Let M be an R-module and N be a proper submodule of M . If M is an

u.c.g.−DICC module, then so are N and M
N

.

We recall that a composition series for a module M is a chain of submodules

0 = M0 ⊂M1 ⊂ ... ⊂Mn = M

such that each of the factors Mi

Mi−1
is a simple module. A module of finite length is any

module that has a composition series. Moreover, it is well known that a module M has

finite length if and only if M is both Noetherian and Artinian.

Note the following result. The proof is standard but we include it for completeness.

Corollary 3.11. Let M be an R-module and let N be of finite length submodule of M .

If M
N

is u.c.g.−DICC, then so is M .

Proof. Let ... ⊆ M−2 ⊆ M−1 ⊆ M0 ⊆ M1 ⊆ M2 ⊆ ... be a double infinite chain of

uncountably generated submodules of M . Then ... ⊆ M−2+N
N

⊆ M−1+N
N

⊆ M0+N
N

⊆
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M1+N
N
⊆ M2+N

N
⊆ ... is a double infinite chain of uncountably generated submodules of M

N
.

Thus, there exists an integer number i such that Mk+N
N

= Mk+1+N

N
for each k ≥ i, or there

exists an integer number i1 such that Mk+N
N

= Mk+1+N

N
for each k ≤ i1. Without less of

generality, we consider that there exists an integer number i such that Mk+N
N

= Mk+1+N

N

for each k ≥ i. Thus, we get Mk + N = Mk+1 + N for each i ≥ k. However, it is clear

that ... ⊆ M−2 ∩ N ⊆ M−1 ∩ N ⊆ M0 ∩ N ⊆ M1 ∩ N ⊆ ... is a double infinite chain

of submodules of N . Since N has finite length, it follows that there exists an integer

number i2 such that Mk ∩ N = Mk+1 ∩ N for each k ≥ i2. Put n = max{i1, i2}. Thus

Mk +N = Mn +N and Mk ∩N = Mn ∩N for each k ≥ n. For each k ≥ n, we conclude

that Mk = Mk ∩ (Mk +N) = Mk ∩ (Mn +N) = Mn + (Mk ∩N) = Mn + (Mn ∩N) = Mn

and we are through. �

Finally, we investigate when atomic modules are u.c.g.-DICC modules.

Proposition 3.12. Let α > ω1 be an ordinal number. An α-atomic module M is u.c.g.−
DICC if and only if M satisfies the descending chain condition on uncountably generated

submodules.

Proof. The sufficiency is obvious. Conversely, since M is α-atomic, we infer that for each

proper submodule N of M , n-dim M
N

= α. By Proposition 2.4, M
N

does not satisfy the

ascending chain condition on uncountably generated submodules. Now, by Lemma 3.4,

N satisfies the descending chain condition on uncountably generated submodules and so

does M , see[9, Lemma 4.4]. �
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