An efficient iterative method for the optimal control of discrete nonlinear interconnected dynamical systems

Document Type : Original Paper

Authors

1 Department of Mathematics, Faculty of Mathematical Science and Statistics, University of Birjand, Birjand, Iran

2 Department of Electrical Engineering, University of Bojnord, Bojnord, Iran

Abstract

This article introduces an iterative method for solving discrete optimal control problems involving interconnected nonlinear systems. Using this approach, the discrete and coupled nonlinear boundary value problem (BVP) obtained from the necessary optimality conditions transforms into a sequence of linear time invariant BVPs. Furthermore, the linear BVP at each iteration of the proposed method consists of several decoupled sub-problems, which can be solved in parallel and are unrelated to each other. The solution of these problems, employing common techniques for solving linear difference equations, leads to an optimal control law in a converging series form with uniform convergence. Moreover, a practical approach is presented to extend the designed optimal control to a feedback form. Subsequently, the implementation of the proposed method involves the design of a highly accurate iterative algorithm with low computational complexity, ensuring that the suboptimal control law is obtained with a minimal number of iterations. Finally, the efficacy of this technique is demonstrated through simulation and the solution of various numerical examples.

Keywords

Main Subjects


[1] Agarwal R.P., 2000. Difference Equations and Inequalities: Theory, Methods, and Applications. New
York: Marcel Dekker, Inc.
[2] Bayat, F., Mobayen, S. and Hatami, T., 2018. Composite nonlinear feedback design for discretetime
switching systems with disturbances and input saturation. Int. J. Syst. Sci., 49(11), pp. 2362–2372.
doi: https://doi.org/10.1080/00207721.2018.1501830
[3] Elloumi, S., Mechichi, A.K. and Braiek, N.B., 2013. On quadratic optimal control of nonlinear
discretetime systems. 10th International MultiConferences on Systems, Signals & Devices , Ham
mamet, Tunisia. doi: http://dx.doi.org/10.1109/SSD.2013.6564124
[4] Hassan Abadi, M., Mahmoudzadeh Vaziri, A. and Jajarmi, A., 2019. On a new and efficient numerical
technique to solve a class of discretetime nonlinear optimal control problems. J. Eur. des Syst. Autom.,
52(3), pp. 305–316. doi: https://doi.org/10.18280/jesa.520312
[5] Jajarmi, A. and Baleanu, D., 2018. Optimal control of nonlinear dynamical systems based on a new
parallel eigenvalue decomposition approach. Optim. Control Appl. Methods, 39(2), pp. 1071–1083.
doi: https://doi.org/10.1002/oca.2397
[6] Jajarmi, A. and Hajipour, M., 2017. An efficient parallel processing optimal control
scheme for a class of nonlinear composite systems. Acta. Math. Sci., 37(3), pp. 703–721.
doi: https://doi.org/10.1016/S02529602(17)300322
[7] Jajarmi, A., Pariz, N., Effati, S. and Vahidian Kamyad, A., 2012. Infinite horizon optimal control for
nonlinear interconnected largescale dynamical systems with an application to optimal attitude control.
Asian J. Control, 14(5), pp. 1239–1250. doi: https://doi.org/10.1002/asjc.452
[8] Janssen, L.A.L., Besselink, B., Fey, R.H.B. and van de Wouw, N., 2024. Modular model reduction
of interconnected systems: A robust performance analysis perspective. Automatica, 160, p. 111423.
doi: https://doi.org/10.1016/j.automatica.2023.111423
[9] Jordan, B.W. and Polak, E., 1964. Theory of a class of discrete optimal control systems, J. Electron.
Control, 17(6), pp. 697–711. doi: https://doi.org/10.1080/00207216408937740
[10] Khatibi, M. and Shanechi, H.M., 2011. Using modal series to analyze the transient response of oscil
lators. Int. J. Circ. Theor. App., 39(2), pp. 127–134. doi: https://doi.org/10.1002/cta.621
[11] Khatibi, M. and Shanechi, H.M., 2015. Using a modified modal Series to analyse weakly nonlinear circuits. Int. J. Electron., 102(9), pp. 1457–1474. doi: https://doi.org/10.1080/00207217.2014.982212
[12] Mehraeen, S. and Jagannathan, S., 2011. Decentralized optimal control of a class of interconnected nonlinear discretetime systems by using online HamiltonJacobiBellman formulation. IEEE Trans.
Neural Netw., 22(11), pp. 1757–1769. doi: https://doi.org/10.1109/TNN.2011.2160968
[13] Molloy, T.L., Ford, J.J. and Perez, T., 2018. Finitehorizon inverse opti
mal control for discretetime nonlinear systems. Automatica, 87, pp. 442–446.
doi: https://doi.org/10.1016/j.automatica.2017.09.023
[14] Pariz, N., 2001. Analysis of Nonlinear System Behavior: The Case of Stressed Power Systems. Iran: PhD Thesis.
[15] Pariz, N., Shanechi, H.M. and Vaahedi, E., 2003. Explaining and validating stressed
power systems behavior using modal series. IEEE Trans. Power. Syst., 18(2), pp. 778–785.
doi: https://doi.org/10.1109/TPWRS.2003.811307
[16] Sajjadi, S.S., Pariz, N., Karimpour, A. and Jajarmi, A., 2014. An offline NMPC strategy for
continuoustime nonlinear systems using an extended modal series method. Nonlinear Dyn., 78(4),
pp. 2651–2674. doi: https://doi.org/10.1007/s1107101416166
[17] Shankar, S., 1999. Nonlinear Systems: Analysis, Stability, and Control. New York: SpringerVerlag.
[18] Soltani, S., Pariz, N. and Ghazi R., 2009. Extending the perturbation technique to the
modal representation of nonlinear systems. Electr. Pow. Syst. Res., 79(8), pp. 1209–1215.
doi: https://doi.org/10.1016/j.epsr.2009.02.011
[19] Song, R., Xiao, W. and Sun, C., 2014. A new selflearning optimal control laws for a class
of discretetime nonlinear systems based on ESN architecture. Sci. China Inf. Sci., 57, pp. 1–10.
doi: http://dx.doi.org/10.1007/s114320134954y
[20] Song, Y., Liu, Y. and Zhao, W., 2024. Approximately bisimilar symbolic model for
discretetime interconnected switched system. IEEE/CAA J. Autom. Sin., 11(0), pp. 1–3.
doi: https://doi.org/10.1109/JAS.2023.123927
[21] Tang, G.Y. and Wang, H.H., 2005. Successive approximation approach of opti
mal control for nonlinear discretetime systems. Int. J. Syst. Sci., 36(3), pp. 153–161.
doi: https://doi.org/10.1080/00207720512331338076
[22] Tang, G.Y., Xie, N. and Liu, P., 2005. Sensitivity approach to optimal control for affine nonlin
ear discretetime systems. Asian J. Control, 7(4), pp. 448–454. doi: https://doi.org/10.1111/j.1934
6093.2005.tb00408.x
[23] Wei, Q. and Li, T., 2024. Constrainedcost adaptive dynamic programming for optimal control
of discretetime nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst., 35(3), pp. 3251–3264.
doi: https://doi.org/10.1109/TNNLS.2023.3237586
[24] Wen, P., Wang, M. and Dai, S.L., 2024. Cooperative learning eventtriggered control for discretetime
nonlinear multiagent systems by internal and external interaction topology. Int. J. Robust Nonlinear
Control, 34(3), pp. 1541–1565. doi: https://doi.org/10.1002/rnc.7044
[25] Yu, T. and Xiong, J., 2023. Decentralised H∞ filtering of interconnected discretetime systems. Int.
J. Control, 96(6), pp. 1505–1513. doi: https://doi.org/10.1109/TFUZZ.2009.2033792
[26] Zhang, Y., Naidu, D.S., Cai, C. and Zou, Y., 2016. Composite control of a class of nonlinear
singularly perturbed discretetime systems via DSDRE. Int. J. Syst. Sci., 47(11), pp. 2632–2641.
doi: https://doi.org/10.1080/00207721.2015.1006710
[27] Zhao, J.Y., 1990. Iterative Determination of Analytical Quasioptimal Control for Nonlinear
Discretetime Systems . France: PhD Thesis.