Non-parallel graph of submodules of a module

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی- دانشکده علوم ریاضی و کامپیوتر- دانشگاه شهید چمران اهواز

چکیده

A non-parallel submodules graph of M, denoted by G ∦ (M), is an undirected simple graph whose vertices are in one-to-one correspondence with all non-zero proper submodules of M and two distinct vertices are adjacent if and only if they are not parallel to each other. In this paper, we investigate the interplay between some of the module-theoretic properties of M and the graph-theoretic properties of G ∦ (M) . It is shown that if G ∦ (M) is connected, then diam(G ∦ (M)) ≤ 3 and if G ∦ (M) is not connected, then G ∦ (M) is a null graph. It is proved that G ∦ (M) is null if and only if M contains a unique simple submodule. In particular, M is a strongly semisimple R -module if and only if G ∦ (M) is a complete graph, and from this it follows that if G ∦ (M) is complete, then every R -module with finite Goldie dimension is Artinian and Noetherian. In addition, G ∦ (M) is a finite star graph if and only if M∼= Z pq, for some distinct prime numbers p and q.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-parallel graph of submodules of a module

نویسندگان [English]

  • nasrin shirali
  • Maryam shirali
ِDepartment of mathematics shahid chamran university of ahvaz , ahvaz iran
چکیده [English]

A non-parallel submodules graph of M, denoted by G ∦ (M), is an undirected simple graph whose vertices are in one-to-one correspondence with all non-zero proper submodules of M and two distinct vertices are adjacent if and only if they are not parallel to each other. In this paper, we investigate the interplay between some of the module-theoretic properties of M and the graph-theoretic properties of G ∦ (M) . It is shown that if G ∦ (M) is connected, then diam(G ∦ (M)) ≤ 3 and if G ∦ (M) is not connected, then G ∦ (M) is a null graph. It is proved that G ∦ (M) is null if and only if M contains a unique simple submodule. In particular, M is a strongly semisimple R -module if and only if G ∦ (M) is a complete graph, and from this it follows that if G ∦ (M) is complete, then every R -module with finite Goldie dimension is Artinian and Noetherian. In addition, G ∦ (M) is a finite star graph if and only if M∼= Z pq, for some distinct prime numbers p and q.

کلیدواژه‌ها [English]

  • Diameter
  • Girth
  • Atomic module
  • Parallel submodules
[1] Akbari, S., Tavallaee, H.A. and Khalashi Ghezelahmad, S., 2012. Intersection graph of submodules of a module. J. Algebra, Appl., 11, 1250019. doi:10.1142/S0219498811005452
[2] Amini, A., Amini, B., Momtahan, E. and Shirdareh Haghighi, M.H., 2012. On a graph of ideals.
Acta Math. Hungar, 134, 369-384. doi:10.1007/s10474-011-0121-3
[3] Anderson, D.F. and Livingston, P.S., 1999. The zero-divisor graph of a commutative ring. J. Algebra, 217, 434-447. doi:10.1006/jabr.1998.7840
[4] Beck I., 1988. Coloring of commutative rings. J. Alge,bra, 116, 208-226. doi:10.1016/0021-
8693(88)90202-5
[5] Bosak, J., 1964. The graph of semigroups. In theory of Graphs and Application, Academic Press,
New York, pp. 119-125.
[6] Csakany, B. and Pollak, G., 1962. The graph of subgroups of a finite group. Czechoslovak Math. J., 19, 241-247. doi:10.21136/CMJ.1969.100891
[7] Dauns, J. and Zhou Y., 2006. Classes of Modules, Chapman and Hall.
[8] Javdannezhad, S.M., Mousavinasab, S.F., Shirali, M. and Shirali, N., 2022. On αparallel short modules. Journal of Advanced Mathematical Modeling. 12(3), 437-447.
doi:10.22055/JAMM.2022.41194.2053
[9] Karamzadeh, O.A.S., Sajedinejad, A.R., 2001. Atomic modules. Comm. Algebra, 29(7), 2757-2773. doi:10.1081/AGB-4985
[10] Shirali, M., Momtahan, E. and Safaeeyan, S., 2020. Perpendicular graph of modules. Hokkaido Math.J., 49, 463-479. doi:10.14492/hokmj/1607936538
[11] Shirali, M. and Safaeeyan, S., 2023. Further studies of perpendicular graph of modules. Journal of Algebraic Systems, 12(2), 391-401. doi:10.22044/JAS.2023.11606.1587
[12] Shirali, M. and Shirali, N., 2022. On parallel Krull dimension of modules. Comm. Algebra, 50(12),5284-5295. doi:10.1080/00927872.2022.2084549
[13] Stenstr¨om, B., 1975. Rings of quotients. Springer-Verlag, New York.
[14] West, D.B., 2001. Introduction to Graph Theory. 2nd edu., Prentice Hall, Upper Saddle River.