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Abstract. Let R be a ring with identity and M be a unitary left R-module. A non-

parallel submodules graph of M , denoted by G∦(M), is an undirected simple graph

whose vertices are in one-one correspondence with all non-zero proper submodules of M

and two distinct vertices are adjacent if and only if they are not parallel to each other.

In this paper, we investigate the interplay between some module-theoretic properties of

M and graph-theoretic properties of G∦(M). It is shown that if G∦(M) is connected,

then diam(G∦(M)) ≤ 3 and if G∦(M) is not connected, then G∦(M) is a null graph.

It is proved that G∦(M) is null if and only if M contains a unique simple submodule.

In particular, M is strongly semisimple R-module if and only if G∦(M) is a complete

graph, and from this, it follows that if G∦(M) is complete, then every R-module with

finite Goldie dimension is Artinian and Noetherian. In addition, G∦(M) is a finite star

graph if and only if M ∼= Zpq, for some distinct prime numbers p and q.

1. Introduction and preliminaries

The investigation of connections between the algebraic structures’ theoretic properties

and the graph-theoretic properties has been studied by several authors. In 1964, Bosak

introduced the concept of the graph of semigroups, see [5]. Inspired by his work, in 1969,

Csakany and Pollak, studied the graph of subgroups of a finite group, in [6]. Fundamental

papers devoted to graphs assigned to a ring have appeared, see [3, 2]. In this article, we

associate a graph to a module over an arbitrary ring (not necessarily commutative). Our
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main goal is to study the connection between the algebraic properties of a module and

the graph-theoretic properties of the graph associated with it. Two modules A and B are

orthogonal, written as A ⊥ B, if they do not have non-zero isomorphic submodules. Mod-

ules A and B are parallel, denoted by A ‖ B, if there does not exist non-zero submodule

of A which is orthogonal to B and also there does not exist non-zero submodule of B

which is orthogonal to A. A module M is called atomic if all of its non-zero submodules

are parallel to each other and so they are parallel to M itself. For more details and some

basic facts about atomic modules, the reader is referred to [7, 8]. We should remind the

reader that these atomic modules are different from those defined in [9]. In this paper, we

introduce and study the concept of non-parallel graph of submodules of an R-module M ,

denoted by G∦(M), that is, the undirected simple graph with the vertices set V(G∦(M))

whose vertices are in one-one correspondence with all non-zero proper submodules of M

and two distinct vertices A and B are adjacent if and only if A ∦ B. Let G be an undi-

rected graph. We say that the graph G is connected, if there is a path between any two

distinct vertices. By a null graph, we mean a graph with no edges. A x, y-path is a path

with starting vertex x and ending vertex y. For distinct vertices x and y, let d(x, y) be the

least length of an x, y-path. If G has non such a path, then d(x, y) =∞. The diameter of

G, is the supremum of the set {d(x, y) | x and y are vertices of G}. A cycle of length n in

G is a path of the form x1−x2−x3−· · ·−xn−x1, where xi 6= xj when i 6= j. The girth of

G, denoted by gr(G), is the length of the smallest cycle in G, provided G contains a cycle,

otherwise gr(G) =∞. A complete graph is a graph in which every pair of distinct vertices

are adjacent. A complete graph with n vertices is denoted by Kn . By a complete sub-

graph, we mean a subgraph which is complete as a graph. A bipartite graph (or bigraph)

is a graph whose vertices can be divided into two disjoint sets V1 and V2 (that is, V1 and

V2 are each independent sets) such that every edge connects a vertex in V1 to one in V2.

Assume that Km,n denoted the complete bipartite graph on two nonempty disjoint sets

V1 and V2 with |V1| = m and |V2| = n (here m and n may be infinite cardinal number).

In particular, K1,n is called a star graph, that is, a tree consisting of one vertex adjacent

to all the others. In graph theory, an independent set or stable set is a set of vertices in

a graph, no two of which are adjacent. Let us give a brief outline of this article. After

reviewing some necessary preliminaries, in Section 2, we show that if G∦(M) is connected,

then diam(G∦(M)) ≤ 3 and if G∦(M) is not connected, then G∦(M) is a null graph. It
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is proved that G∦(M) is null if and only if M contains a unique simple submodule. We

recall that the Goldie dimension of an R-module M , denoted by G-dim (M), which is the

supremum of all cardinals k such that M contains a direct sum of k non-zero submodules.

In particular, it is shown that M is strongly semisimple R-module if and only if G∦(M) is

a complete graph and as a result, if G∦(M) is complete, then every R-module with finite

Goldie dimension is Artinian and Noetherian. In Section 3, we provide some examples

of non-parallel graphs of cyclic finite Abelian groups. It is proved that G∦(M) is a finite

star graph if and only if M ∼= Zpq, for some distinct prime numbers p and q.

Throughout this article, all rings are associative with 1 6= 0 and all modules are unital left

modules. The notation A ⊆e M means A is an essential submodule of M . A module M

is said to be uniform if every non-zero submodule of M is essential. A non-zero R-module

M is said to be simple if it has no non-trivial submodule. The socle of an R-module M ,

written Soc(M), is the sum of all simple submodules of M . For an R-module M , the

length of M , is denoted by lR(M).

2. Connectivity, Diameter and Girth of G∦(M)

In this section, we characterize all modules for which the non-parallel graph of submod-

ules, i.e., G∦(M), is connected. Also, the diameter and the girth of G∦(M) are determined.

Moreover, we study some modules whose non-parallel graphs are complete.

We need the following result, see also [12].

Lemma 2.1. Let M be an R-module and A,B,C be submodules of M . Then the following

statements hold.

(1) If A ⊆e M , then A ‖M .

(2) If B ∼= C and A ⊥ B, then A ⊥ C.

(3) If A ‖ B and B ‖ C, then A ‖ C.

(4) If A ‖ B such that C ⊥ A, then C ⊥ B.

(5) If A ‖ B such that B ∼= C, then A ‖ C.

(6) If C ⊆ B ⊆ A such that C ‖ A, then B ‖ A.

Theorem 2.2. Let M be an R-module. If G∦(M) is connected, then diam(G∦(M)) ≤ 3.

Proof. Let N and K be two non-trivial distinct submodules of M . If N 6‖ K, then

d(N,K) = 1. Suppose that N ‖ K and so N 6⊥ K. In this case, there exists 0 6= N1 ⊆ N
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and 0 6= K1 ⊆ K such that N1
∼= K1. Since G∦(M) is connected, so there exist non-zero

submodules N ′ and K ′ of M such that N is adjacent to N ′ and K is adjacent to K ′. Now,

the following cases may happen.

Case 1. If N ′ = K ′, then N −N ′ −K is a path of length 2, that is, d(N,K) = 2.

Case 2. If N ′ is adjacent to K ′, then N − N ′ − K ′ − K is a path of length 3, that is,

d(N,K) = 3.

Case 3. If N ′ is not adjacent to K ′, then N ′ ‖ K ′ and so N ′ 6⊥ K ′. Thus, there exist

0 6= N ′′ ⊆ N ′ and 0 6= K ′′ ⊆ K ′ such that N ′′ ∼= K ′′. Now, since K ∦ K ′ two cases may

happen:

Case (i): There exists 0 6= K2 ⊆ K such that K2 ⊥ K ′. Since K ′′ ⊆ K ′, whence K2 ⊥ K ′′

and by Lemma 2.1(2), K2 ⊥ N ′′, that is, N ′ and K contain orthogonal submodules.

Hence, N ′ ∦ K and so N −N ′ −K is a path of length 2, that is, d(N,K) = 2.

Case (ii): There exists 0 6= K ′
1 ⊆ K ′ such that, K ′

1 ⊥ K. Since K1 ⊆ K, so K ′
1 ⊥ K1.

But K1
∼= N1 and so K ′

1 ⊥ N1 hence, N and K ′ contain orthogonal submodules. Thus,

N ∦ K ′ and N −K ′ −K is a path of length 2, that is, d(N,K) = 2. �

Proposition 2.3. Let M be an R-module. If G∦(M) is not connected, then G∦(M) is a

null graph. Moreover, M is an atomic module.

Proof. Assume that G∦(M) is not connected and C1 and C2 are two components of G∦(M).

Let N and K be two submodules of M such that N ∈ C1 and K ∈ C2. Since N and K

are not adjacent thus, N ‖ K. It suffices to show that, M is an atomic module. On the

contrary, there exist A,B ⊆ M such that A ∦ B. Now, we put A,B ∈ C1 thus, A ‖ K
and B ‖ K, by Lemma 2.1(3), we get A ‖ B, the contradiction required. �

Theorem 2.4. Let M be an R-module. If G∦(M) contains a cycle, then gr(G∦(M)) = 3.

Proof. Let A and B be two distinct non-trivial submodules of M with A ∦ B. Then two

cases may happen:

Case 1. There exists 0 6= A1 ⊆ A such that A1 ⊥ B. It is easy to see that A ∦ A+B and

B ∦ A+B. Thus (A , A+B, B) is a cycle of length 3 in G∦(M).

Case 2. There exists 0 6= B1 ⊆ B such that A ⊥ B1. By similar way of case 1, we are

done. �
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Remark 2.5. We recall that an R-module M is said to be atomic if every pair of non-zero

submodules of M are parallel. Clearly, ∅ 6= G∦(M) is a null graph if and only if M is an

atomic module. For instance, Z, Q, Zpn , n ∈ N, and Zp∞ , where p is a prime number,

as Z-module, are atomic and hence, their non-parallel graphs are null. But semisimple

modules, which they have at least two non-isomorphic simple submodules, can not have

null non-parallel graph.

Proposition 2.6. Let M be an Artinian R-module. Then G∦(M) is null if and only if

M contains a unique simple submodule.

Proof. Suppose that M contains a unique simple submodule, say S. Since M is Artinian

thus, for all submodules A,B of M , S ⊆ A∩B, and then A ‖ B, that is, G∦(M) is a null

graph. Conversely, if G∦(M) is null, then M is an atomic module. But M is Artinian,

thus it has a simple submodule. We assume that S1 and S2 are two simple submodule of

M thus, S1 ‖ S2 and so S1 = S2. Therefore, M contains a unique simple submodule. �

The following result is immediate.

Corollary 2.7. Let M be an Artinian R-module. Then M is atomic if and only if M

contains a unique simple submodule.

Inasmuch as empty graph is trivially a complete graph, we shall focus on this question

that under which conditions G∦(M) is a complete graph. In the following theorem, we

study some modules whose non-parallel graph of submodules are complete. A moduleM is

called strongly semisimple, if M be semisimple and has no isomorphic simple submodules.

Theorem 2.8. Let M be an R-module. Then M is strongly semisimple if and only if

G∦(M) is a complete graph.

Proof. Suppose that M is a strongly semisimple module, so M = Soc(M) = ⊕i∈ISi such

that Si 6∼= Sj for any i 6= j. Assume that K 6= N are non-zero proper submodules of M , so

there exist S1 ⊆M\N and S2 ⊆M\K. But S1∩N ⊂ S1 and S2∩K ⊂ S2 thus, S1∩N = 0

and S2 ∩K = 0. Now, we claim that S1 ⊥ N and S2 ⊥ K. Suppose that S1 6⊥ N , there

exists 0 6= N1 ⊆ N such that N1
∼= S1. Therefore, S1 = S1 ∩ S1

∼= N1 ∩ S1 ⊆ N ∩ S1 = 0

and then S1 = 0, which is a contradiction. A similar argument shows that S2 ⊥ K.

Thus, S1 6‖ N and S2 6‖ K. But N and K are semisimple, so there exist non-isomorphic
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simple submodules T and T ′ of M such that T ⊆ N and T ′ ⊆ K (note, N 6= K). Thus,

N,K contain orthogonal submodules and so N 6‖ K. Therefore, the graph G∦(M) is

complete, that is, M does not have parallel submodules. Conversely, suppose that G∦(M)

is a complete graph. We show that M is semisimple. To see this, it suffices to show that,

M has no essential submodule. If A ⊆e M , then for any 0 6= B ⊆ M , A ∩ B 6= 0 and so

A 6⊥ B, that is, A ‖ B and the contradiction required. Moreover, if M = Soc(M) = ⊕i∈ISi
and there exists Si ∼= Sj for some i 6= j, then Si ‖ Sj, which is a contradiction. Hence, M

is strongly semisimple. �

We note that the strongly condition in Theorem 2.8, is required. Because, if M is a

semisimple module which contains isomorphic simple submodules S1 and S2, then S1 ‖ S2.

This is contradictory with the completeness of the graph.

Corollary 2.9. Let M be an R-module with finite Goldie dimension. If G∦(M) is a

complete graph, then M is both Artinian and Noetherian.

Proof. Since G-dim (M) <∞, so for any chain M0 (M1 ( ... of submodules of M , there

exists n such that for any k ≥ n, Mn ⊆e Mk. Hence, by Lemma 2.1(1), Mn ‖ Mk, but

G∦(M) is complete and so Mn = Mk. This shows that M is Noetherian. Applying the

same argument to any chain M0 )M1 ) ... of submodules of M , we get M is Artinian.

�

The next example shows that, the converse of Corollary 2.9, is not true in general.

Example 2.10. Let M = Z18 be a Z-module . It is easy to see that M is Artinian and

Noetherian and so we infer that G-dim (M) < ∞. But the following figure shows that

G∦(M) is not complete.
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Figure 1. Z18

Definition 2.11. Let M be an R-module. The Krull dimension of M , denoted by

k -dim (M) is defined by transfinite recursion as follows: If M = 0, k -dim (M) = −1.

If α is an ordinal number and k -dim (M) ≮ α, then k -dim (M) = α provided there is no

infinite descending chain of submodules of M such as M0 ⊇ M1 ⊇ M2 ⊇ ... such that

for each i = 1, 2, ..., k -dim (Mi−1

Mi
) ≮ α. In otherwise k -dim (M) = α, if k -dim (M) ≮ α

and for each chain of submodules to M such as M0 ⊇ M1 ⊇ M2 ⊇ ... there exists an

integer t, such that for each i ≥ t, k -dim (Mi−1

Mi
) < α. A ring R has Krull dimension, if

as an R-module has Krull dimension. It is possible that there is no ordinal α such that

k -dim (M) = α, in this case we say M has no Krull dimension.

It is well known that, every module with Krull dimension has finite Goldie dimension.

Proposition 2.12. Let M be an R-module with Krull dimension. If G∦(M) is complete,

then M is both Artinian and Noetherian.

Since Z is not Artinian and, Zp∞ is not Noetherian, as Z-module, hence Z-module

Z ⊕ Zp∞ is neither Artinian nor Noetherian, but it has finite Goldi dimension (note,

every module with Krull dimension has finite Goldie dimension). Therefore, we have the

following result.

Corollary 2.13. G∦(Z), G∦(Zp∞) and G∦(Z⊕ Zp∞), as Z-module, are not complete.

Recall that, a path graph with 2 vertices is denoted by P2. We note that if G∦(M) ∼= P2,

then V(G∦(M)) = {A,B} such that A ∦ B. It is easy to see that A and B are non-

isomorphism simple submodules of M thus, A ⊥ B and then A∩B = 0. Since A+B = M ,

whence M = A⊕B thus, lR(M) = 2, for example Z-module Z6, see the following figure.
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Figure 2. Z6

3. Non-Parallel Graph For Abelian Groups

Inasmuch as Abelian groups are precisely Z-modules. For the sake of the reader we

provide some examples of non-parallel graphs of cyclic finite Abelian groups, i.e., Zn,

where n ∈ N. While straightforward, we need the following lemma to prove the next

results.

Lemma 3.1. let A =< m > and B =< k > are subgroups of Zn, then the following hold:

(1) A ⊥ B if and only if (O(m), O(k)) = 1.

(2) A ∦ B if and only if for any m′|m and k′|k, (O(m′), O(k′)) = 1.

Proof. (1) See [10, Lemma 5.1].

(2) Assume that m′|m, k′|k and (O(m′), O(k′)) = 1, by part of (1), < m′ >⊥< k′ >, i.e.,

A and B have orthogonal submodules and thus, A 6‖ B.

Conversely, let A 6‖ B so, there exists non-zero submodule A′ =< m′ > of A such that,

either A′ ⊥ B or there exists non-zero submodule B′ =< k′ > of B such that A ⊥ B′. By

part of (1), (O(m′), O(B)) = (O(m′), O(k)) = 1 and we infer that (O(m′), O(k′)) = 1, for

any k′|k. Similarly, (O(k′), O(A)) = (O(k′), O(m)) = 1 and hence, (O(k′), O(m′)) = 1 for

any m′|m. �

In the next theorem, we characterize finite Abelian groups for which their non-parallel

graphs are star graphs.

Theorem 3.2. Let M be a finite Abelian group. Then G∦(M) is a finite star graph if and

only if M ∼= Zpq, for some distinct prime numbers p and q.

Proof. Since M is a finite Abelian group thus, there exist prime numbers p1, p2, ..., pm and

positive integers α1, α2, ..., αm, such that M ∼= Zα1
p1
⊕ ... ⊕ Zαm

pm . It suffices to show that



116 NASRIN SHIRALI∗ AND MARYAM SHIRALI

m = 2 and α1 = α2 = 1. Hence, the proof will be divided into two steps.

Step 1. We show that m = 2. Suppose, by way of contradiction, that m ≥ 3. Put

N1 = Zα1
p1
⊕{0}⊕...⊕{0} , N2 = {0}⊕Zα2

p2
⊕...⊕{0} and N3 = {0}⊕{0}⊕Zα3

p3
⊕...⊕{0}. It

is clear that N1, N2 and N3 are three distinct subgroups of M , which are mutually adjacent

in G∦(M). It is a contradiction because G∦(M) is a star graph.

Step 2. We show that α1 = α2 = 1. Assume that α1 ≥ 2 and α1 ≥ 2. It is easy to see

that G∦(Zα1
p1
⊕ Zα2

p2
) is not a star graph. Hence, M ∼= Zpq. �
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