University of Ahvaz

NON-PARALLEL GRAPH OF SUBMODULES OF A MODULE

NASRIN SHIRALI* AND MARYAM SHIRALI

Communicated by: M.namdari

Abstract

Let R be a ring with identity and M be a unitary left R-module. A nonparallel submodules graph of M, denoted by $G_{\not}(M)$, is an undirected simple graph whose vertices are in one-one correspondence with all non-zero proper submodules of M and two distinct vertices are adjacent if and only if they are not parallel to each other. In this paper, we investigate the interplay between some module-theoretic properties of M and graph-theoretic properties of $G_{\nmid}(M)$. It is shown that if $G_{\nmid}(M)$ is connected, then $\operatorname{diam}\left(G_{\nmid}(M)\right) \leq 3$ and if $G_{\nmid}(M)$ is not connected, then $G_{\nmid}(M)$ is a null graph. It is proved that $G_{\not}(M)$ is null if and only if M contains a unique simple submodule. In particular, M is strongly semisimple R-module if and only if $G_{\nmid}(M)$ is a complete graph, and from this, it follows that if $G_{\nmid}(M)$ is complete, then every R-module with finite Goldie dimension is Artinian and Noetherian. In addition, $G_{\not,}(M)$ is a finite star graph if and only if $M \cong \mathbb{Z}_{p q}$, for some distinct prime numbers p and q.

1. Introduction and preliminaries

The investigation of connections between the algebraic structures' theoretic properties and the graph-theoretic properties has been studied by several authors. In 1964, Bosak introduced the concept of the graph of semigroups, see [5]. Inspired by his work, in 1969, Csakany and Pollak, studied the graph of subgroups of a finite group, in [6]. Fundamental papers devoted to graphs assigned to a ring have appeared, see [3, 2]. In this article, we associate a graph to a module over an arbitrary ring (not necessarily commutative). Our MSC(2020): 05C25, 05C25, 16D10.

Keywords: Diameter, Girth, Atomic module, Parallel submodules.
Received: 16 November 2023, Accepted: 20 May 2024.
*Corresponding author.
main goal is to study the connection between the algebraic properties of a module and the graph-theoretic properties of the graph associated with it. Two modules A and B are orthogonal, written as $A \perp B$, if they do not have non-zero isomorphic submodules. Modules A and B are parallel, denoted by $A \| B$, if there does not exist non-zero submodule of A which is orthogonal to B and also there does not exist non-zero submodule of B which is orthogonal to A. A module M is called atomic if all of its non-zero submodules are parallel to each other and so they are parallel to M itself. For more details and some basic facts about atomic modules, the reader is referred to $[7,8]$. We should remind the reader that these atomic modules are different from those defined in [9]. In this paper, we introduce and study the concept of non-parallel graph of submodules of an R-module M, denoted by $G_{\nVdash}(M)$, that is, the undirected simple graph with the vertices set $\mathrm{V}\left(G_{\nVdash}(M)\right)$ whose vertices are in one-one correspondence with all non-zero proper submodules of M and two distinct vertices A and B are adjacent if and only if $A \nVdash B$. Let G be an undirected graph. We say that the graph G is connected, if there is a path between any two distinct vertices. By a null graph, we mean a graph with no edges. A x, y-path is a path with starting vertex x and ending vertex y. For distinct vertices x and y, let $d(x, y)$ be the least length of an x, y-path. If G has non such a path, then $d(x, y)=\infty$. The diameter of G, is the supremum of the set $\{d(x, y) \mid x$ and y are vertices of $G\}$. A cycle of length n in G is a path of the form $x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}$, where $x_{i} \neq x_{j}$ when $i \neq j$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of the smallest cycle in G, provided G contains a cycle, otherwise $\operatorname{gr}(G)=\infty$. A complete graph is a graph in which every pair of distinct vertices are adjacent. A complete graph with n vertices is denoted by K_{n}. By a complete subgraph, we mean a subgraph which is complete as a graph. A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets V_{1} and V_{2} (that is, V_{1} and V_{2} are each independent sets) such that every edge connects a vertex in V_{1} to one in V_{2}. Assume that $K_{m, n}$ denoted the complete bipartite graph on two nonempty disjoint sets V_{1} and V_{2} with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ (here m and n may be infinite cardinal number). In particular, $K_{1},{ }_{n}$ is called a star graph, that is, a tree consisting of one vertex adjacent to all the others. In graph theory, an independent set or stable set is a set of vertices in a graph, no two of which are adjacent. Let us give a brief outline of this article. After reviewing some necessary preliminaries, in Section 2, we show that if $G_{\not}(M)$ is connected, then $\operatorname{diam}\left(G_{\not}(M)\right) \leq 3$ and if $G_{\nmid}(M)$ is not connected, then $G_{\nmid}(M)$ is a null graph. It
is proved that $G_{\nmid}(M)$ is null if and only if M contains a unique simple submodule. We recall that the Goldie dimension of an R-module M, denoted by G - $\operatorname{dim}(M)$, which is the supremum of all cardinals k such that M contains a direct sum of k non-zero submodules. In particular, it is shown that M is strongly semisimple R-module if and only if $G_{\nmid}(M)$ is a complete graph and as a result, if $G_{\nmid}(M)$ is complete, then every R-module with finite Goldie dimension is Artinian and Noetherian. In Section 3, we provide some examples of non-parallel graphs of cyclic finite Abelian groups. It is proved that $G_{\nmid}(M)$ is a finite star graph if and only if $M \cong \mathbb{Z}_{p q}$, for some distinct prime numbers p and q.
Throughout this article, all rings are associative with $1 \neq 0$ and all modules are unital left modules. The notation $A \subseteq_{e} M$ means A is an essential submodule of M. A module M is said to be uniform if every non-zero submodule of M is essential. A non-zero R-module M is said to be simple if it has no non-trivial submodule. The socle of an R-module M, written $\operatorname{Soc}(M)$, is the sum of all simple submodules of M. For an R-module M, the length of M, is denoted by $l_{R}(M)$.

2. Connectivity, Diameter and Girth of $G_{\not ㇒}(M)$

In this section, we characterize all modules for which the non-parallel graph of submodules, i.e., $G_{\nVdash}(M)$, is connected. Also, the diameter and the girth of $G_{\nmid}(M)$ are determined. Moreover, we study some modules whose non-parallel graphs are complete.

We need the following result, see also [12].
Lemma 2.1. Let M be an R-module and A, B, C be submodules of M. Then the following statements hold.
(1) If $A \subseteq_{e} M$, then $A \| M$.
(2) If $B \cong C$ and $A \perp B$, then $A \perp C$.
(3) If $A \| B$ and $B \| C$, then $A \| C$.
(4) If $A \| B$ such that $C \perp A$, then $C \perp B$.
(5) If $A \| B$ such that $B \cong C$, then $A \| C$.
(6) If $C \subseteq B \subseteq A$ such that $C \| A$, then $B \| A$.

Theorem 2.2. Let M be an R-module. If $G_{\nmid}(M)$ is connected, then $\operatorname{diam}\left(G_{\nmid}(M)\right) \leq 3$.
Proof. Let N and K be two non-trivial distinct submodules of M. If $N \not K K$, then $d(N, K)=1$. Suppose that $N \| K$ and so $N \not \perp K$. In this case, there exists $0 \neq N_{1} \subseteq N$
and $0 \neq K_{1} \subseteq K$ such that $N_{1} \cong K_{1}$. Since $G_{\nmid}(M)$ is connected, so there exist non-zero submodules N^{\prime} and K^{\prime} of M such that N is adjacent to N^{\prime} and K is adjacent to K^{\prime}. Now, the following cases may happen.
Case 1. If $N^{\prime}=K^{\prime}$, then $N-N^{\prime}-K$ is a path of length 2 , that is, $d(N, K)=2$.
Case 2. If N^{\prime} is adjacent to K^{\prime}, then $N-N^{\prime}-K^{\prime}-K$ is a path of length 3 , that is, $d(N, K)=3$.
Case 3. If N^{\prime} is not adjacent to K^{\prime}, then $N^{\prime} \| K^{\prime}$ and so $N^{\prime} \not \perp K^{\prime}$. Thus, there exist $0 \neq N^{\prime \prime} \subseteq N^{\prime}$ and $0 \neq K^{\prime \prime} \subseteq K^{\prime}$ such that $N^{\prime \prime} \cong K^{\prime \prime}$. Now, since $K \nVdash K^{\prime}$ two cases may happen:
Case (i): There exists $0 \neq K_{2} \subseteq K$ such that $K_{2} \perp K^{\prime}$. Since $K^{\prime \prime} \subseteq K^{\prime}$, whence $K_{2} \perp K^{\prime \prime}$ and by Lemma 2.1(2), $K_{2} \perp N^{\prime \prime}$, that is, N^{\prime} and K contain orthogonal submodules. Hence, $N^{\prime} \nVdash K$ and so $N-N^{\prime}-K$ is a path of length 2 , that is, $d(N, K)=2$.
Case (ii): There exists $0 \neq K_{1}^{\prime} \subseteq K^{\prime}$ such that, $K_{1}^{\prime} \perp K$. Since $K_{1} \subseteq K$, so $K_{1}^{\prime} \perp K_{1}$. But $K_{1} \cong N_{1}$ and so $K_{1}^{\prime} \perp N_{1}$ hence, N and K^{\prime} contain orthogonal submodules. Thus, $N \nVdash K^{\prime}$ and $N-K^{\prime}-K$ is a path of length 2 , that is, $d(N, K)=2$.

Proposition 2.3. Let M be an R-module. If $G_{\nmid}(M)$ is not connected, then $G_{\nmid}(M)$ is a null graph. Moreover, M is an atomic module.

Proof. Assume that $G_{\nmid}(M)$ is not connected and C_{1} and C_{2} are two components of $G_{\nmid}(M)$. Let N and K be two submodules of M such that $N \in C_{1}$ and $K \in C_{2}$. Since N and K are not adjacent thus, $N \| K$. It suffices to show that, M is an atomic module. On the contrary, there exist $A, B \subseteq M$ such that $A \nVdash B$. Now, we put $A, B \in C_{1}$ thus, $A \| K$ and $B \| K$, by Lemma 2.1(3), we get $A \| B$, the contradiction required.

Theorem 2.4. Let M be an R-module. If $G_{\nVdash}(M)$ contains a cycle, then $\operatorname{gr}\left(G_{\nmid}(M)\right)=3$.

Proof. Let A and B be two distinct non-trivial submodules of M with $A \nVdash B$. Then two cases may happen:
Case 1. There exists $0 \neq A_{1} \subseteq A$ such that $A_{1} \perp B$. It is easy to see that $A \nVdash A+B$ and $B \nVdash A+B$. Thus $(\mathrm{A}, \mathrm{A}+\mathrm{B}, \mathrm{B})$ is a cycle of length 3 in $G_{\nmid}(M)$.
Case 2. There exists $0 \neq B_{1} \subseteq B$ such that $A \perp B_{1}$. By similar way of case 1 , we are done.

Remark 2.5. We recall that an R-module M is said to be atomic if every pair of non-zero submodules of M are parallel. Clearly, $\emptyset \neq G_{\nmid}(M)$ is a null graph if and only if M is an atomic module. For instance, $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{p^{n}}, n \in \mathbb{N}$, and $\mathbb{Z}_{p^{\infty}}$, where p is a prime number, as \mathbb{Z}-module, are atomic and hence, their non-parallel graphs are null. But semisimple modules, which they have at least two non-isomorphic simple submodules, can not have null non-parallel graph.

Proposition 2.6. Let M be an Artinian R-module. Then $G_{\nmid}(M)$ is null if and only if M contains a unique simple submodule.

Proof. Suppose that M contains a unique simple submodule, say S. Since M is Artinian thus, for all submodules A, B of $M, S \subseteq A \cap B$, and then $A \| B$, that is, $G_{\nmid}(M)$ is a null graph. Conversely, if $G_{\sharp}(M)$ is null, then M is an atomic module. But M is Artinian, thus it has a simple submodule. We assume that S_{1} and S_{2} are two simple submodule of M thus, $S_{1} \| S_{2}$ and so $S_{1}=S_{2}$. Therefore, M contains a unique simple submodule.

The following result is immediate.
Corollary 2.7. Let M be an Artinian R-module. Then M is atomic if and only if M contains a unique simple submodule.

Inasmuch as empty graph is trivially a complete graph, we shall focus on this question that under which conditions $G_{\nmid}(M)$ is a complete graph. In the following theorem, we study some modules whose non-parallel graph of submodules are complete. A module M is called strongly semisimple, if M be semisimple and has no isomorphic simple submodules.

Theorem 2.8. Let M be an R-module. Then M is strongly semisimple if and only if $G_{\nmid}(M)$ is a complete graph.

Proof. Suppose that M is a strongly semisimple module, so $M=\operatorname{Soc}(M)=\oplus_{i \in I} S_{i}$ such that $S_{i} \not \neq S_{j}$ for any $i \neq j$. Assume that $K \neq N$ are non-zero proper submodules of M, so there exist $S_{1} \subseteq M \backslash N$ and $S_{2} \subseteq M \backslash K$. But $S_{1} \cap N \subset S_{1}$ and $S_{2} \cap K \subset S_{2}$ thus, $S_{1} \cap N=0$ and $S_{2} \cap K=0$. Now, we claim that $S_{1} \perp N$ and $S_{2} \perp K$. Suppose that $S_{1} \not \perp N$, there exists $0 \neq N_{1} \subseteq N$ such that $N_{1} \cong S_{1}$. Therefore, $S_{1}=S_{1} \cap S_{1} \cong N_{1} \cap S_{1} \subseteq N \cap S_{1}=0$ and then $S_{1}=0$, which is a contradiction. A similar argument shows that $S_{2} \perp K$. Thus, $S_{1} \nVdash N$ and $S_{2} \nVdash K$. But N and K are semisimple, so there exist non-isomorphic
simple submodules T and T^{\prime} of M such that $T \subseteq N$ and $T^{\prime} \subseteq K$ (note, $N \neq K$). Thus, N, K contain orthogonal submodules and so $N \nVdash K$. Therefore, the graph $G_{\nmid}(M)$ is complete, that is, M does not have parallel submodules. Conversely, suppose that $G_{\nmid}(M)$ is a complete graph. We show that M is semisimple. To see this, it suffices to show that, M has no essential submodule. If $A \subseteq_{e} M$, then for any $0 \neq B \subseteq M, A \cap B \neq 0$ and so $A \not \perp B$, that is, $A \| B$ and the contradiction required. Moreover, if $M=\operatorname{Soc}(M)=\oplus_{i \in I} S_{i}$ and there exists $S_{i} \cong S_{j}$ for some $i \neq j$, then $S_{i} \| S_{j}$, which is a contradiction. Hence, M is strongly semisimple.

We note that the strongly condition in Theorem 2.8, is required. Because, if M is a semisimple module which contains isomorphic simple submodules S_{1} and S_{2}, then $S_{1} \| S_{2}$. This is contradictory with the completeness of the graph.

Corollary 2.9. Let M be an R-module with finite Goldie dimension. If $G_{\nVdash}(M)$ is a complete graph, then M is both Artinian and Noetherian.

Proof. Since G - $\operatorname{dim}(M)<\infty$, so for any chain $M_{0} \subsetneq M_{1} \subsetneq \ldots$ of submodules of M, there exists n such that for any $k \geq n, M_{n} \subseteq_{e} M_{k}$. Hence, by Lemma 2.1(1), $M_{n} \| M_{k}$, but $G_{\nVdash}(M)$ is complete and so $M_{n}=M_{k}$. This shows that M is Noetherian. Applying the same argument to any chain $M_{0} \supsetneq M_{1} \supsetneq \ldots$ of submodules of M, we get M is Artinian.

The next example shows that, the converse of Corollary 2.9, is not true in general.

Example 2.10. Let $M=\mathbb{Z}_{18}$ be a \mathbb{Z}-module. It is easy to see that M is Artinian and Noetherian and so we infer that G - $\operatorname{dim}(M)<\infty$. But the following figure shows that $G_{\not}(M)$ is not complete.

Figure 1. \mathbb{Z}_{18}
Definition 2.11. Let M be an R-module. The Krull dimension of M, denoted by k-dim (M) is defined by transfinite recursion as follows: If $M=0, k$ - $\operatorname{dim}(M)=-1$. If α is an ordinal number and k - $\operatorname{dim}(M) \nless \alpha$, then k - $\operatorname{dim}(M)=\alpha$ provided there is no infinite descending chain of submodules of M such as $M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$ such that for each $i=1,2, \ldots, k$-dim $\left(\frac{M_{i-1}}{M_{i}}\right) \nless \alpha$. In otherwise k - $\operatorname{dim}(M)=\alpha$, if k - $\operatorname{dim}(M) \nless \alpha$ and for each chain of submodules to M such as $M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$ there exists an integer t, such that for each $i \geq t, k$ - $\operatorname{dim}\left(\frac{M_{i-1}}{M_{i}}\right)<\alpha$. A ring R has Krull dimension, if as an R-module has Krull dimension. It is possible that there is no ordinal α such that k - $\operatorname{dim}(M)=\alpha$, in this case we say M has no Krull dimension.

It is well known that, every module with Krull dimension has finite Goldie dimension.
Proposition 2.12. Let M be an R-module with Krull dimension. If $G_{\nVdash}(M)$ is complete, then M is both Artinian and Noetherian.

Since \mathbb{Z} is not Artinian and, $\mathbb{Z}_{p^{\infty}}$ is not Noetherian, as \mathbb{Z}-module, hence \mathbb{Z}-module $Z \oplus Z_{p \infty}$ is neither Artinian nor Noetherian, but it has finite Goldi dimension (note, every module with Krull dimension has finite Goldie dimension). Therefore, we have the following result.

Corollary 2.13. $G_{\nmid}(\mathbb{Z}), G_{\nmid}\left(\mathbb{Z}_{p^{\infty}}\right)$ and $G_{\nmid}\left(\mathbb{Z} \oplus \mathbb{Z}_{p^{\infty}}\right)$, as \mathbb{Z}-module, are not complete.
Recall that, a path graph with 2 vertices is denoted by P_{2}. We note that if $G_{\nVdash}(M) \cong P_{2}$, then $\mathrm{V}\left(G_{\nVdash}(M)\right)=\{A, B\}$ such that $A \nVdash B$. It is easy to see that A and B are nonisomorphism simple submodules of M thus, $A \perp B$ and then $A \cap B=0$. Since $A+B=M$, whence $M=A \oplus B$ thus, $l_{R}(M)=2$, for example \mathbb{Z}-module \mathbb{Z}_{6}, see the following figure.

Figure 2. \mathbb{Z}_{6}

3. Non-Parallel Graph For Abelian Groups

Inasmuch as Abelian groups are precisely \mathbb{Z}-modules. For the sake of the reader we provide some examples of non-parallel graphs of cyclic finite Abelian groups, i.e., \mathbb{Z}_{n}, where $n \in \mathbb{N}$. While straightforward, we need the following lemma to prove the next results.

Lemma 3.1. let $A=<m>$ and $B=<k>$ are subgroups of \mathbb{Z}_{n}, then the following hold:
(1) $A \perp B$ if and only if $(O(m), O(k))=1$.
(2) $A \nVdash B$ if and only if for any $m^{\prime} \mid m$ and $k^{\prime} \mid k,\left(O\left(m^{\prime}\right), O\left(k^{\prime}\right)\right)=1$.

Proof. (1) See [10, Lemma 5.1].
(2) Assume that $m^{\prime}\left|m, k^{\prime}\right| k$ and $\left(O\left(m^{\prime}\right), O\left(k^{\prime}\right)\right)=1$, by part of $(1),<m^{\prime}>\perp<k^{\prime}>$, i.e., A and B have orthogonal submodules and thus, $A \nVdash B$.
Conversely, let $A \nVdash B$ so, there exists non-zero submodule $A^{\prime}=<m^{\prime}>$ of A such that, either $A^{\prime} \perp B$ or there exists non-zero submodule $B^{\prime}=<k^{\prime}>$ of B such that $A \perp B^{\prime}$. By part of $(1),\left(O\left(m^{\prime}\right), O(B)\right)=\left(O\left(m^{\prime}\right), O(k)\right)=1$ and we infer that $\left(O\left(m^{\prime}\right), O\left(k^{\prime}\right)\right)=1$, for any $k^{\prime} \mid k$. Similarly, $\left(O\left(k^{\prime}\right), O(A)\right)=\left(O\left(k^{\prime}\right), O(m)\right)=1$ and hence, $\left(O\left(k^{\prime}\right), O\left(m^{\prime}\right)\right)=1$ for any $m^{\prime} \mid m$.

In the next theorem, we characterize finite Abelian groups for which their non-parallel graphs are star graphs.

Theorem 3.2. Let M be a finite Abelian group. Then $G_{\nmid}(M)$ is a finite star graph if and only if $M \cong \mathbb{Z}_{p q}$, for some distinct prime numbers p and q.

Proof. Since M is a finite Abelian group thus, there exist prime numbers $p_{1}, p_{2}, \ldots, p_{m}$ and positive integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, such that $M \cong \mathbb{Z}_{p_{1}}^{\alpha_{1}} \oplus \ldots \oplus \mathbb{Z}_{p_{m}}^{\alpha_{m}}$. It suffices to show that
$m=2$ and $\alpha_{1}=\alpha_{2}=1$. Hence, the proof will be divided into two steps.
Step 1. We show that $m=2$. Suppose, by way of contradiction, that $m \geq 3$. Put $N_{1}=\mathbb{Z}_{p_{1}}^{\alpha_{1}} \oplus\{0\} \oplus \ldots \oplus\{0\}, N_{2}=\{0\} \oplus \mathbb{Z}_{p_{2}}^{\alpha_{2}} \oplus \ldots \oplus\{0\}$ and $N_{3}=\{0\} \oplus\{0\} \oplus \mathbb{Z}_{p_{3}}^{\alpha_{3}} \oplus \ldots \oplus\{0\}$. It is clear that N_{1}, N_{2} and N_{3} are three distinct subgroups of M, which are mutually adjacent in $G_{\nmid}(M)$. It is a contradiction because $G_{\nmid}(M)$ is a star graph.
Step 2. We show that $\alpha_{1}=\alpha_{2}=1$. Assume that $\alpha_{1} \geq 2$ and $\alpha_{1} \geq 2$. It is easy to see that $G_{\nmid}\left(\mathbb{Z}_{p_{1}}^{\alpha_{1}} \oplus \mathbb{Z}_{p_{2}}^{\alpha_{2}}\right)$ is not a star graph. Hence, $M \cong \mathbb{Z}_{p q}$.

Acknowledgments

The authors would like to thank the referees for reading the article carefully and giving useful comments and efforts towards improving the manuscript.
The first author is grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (GN: SCU.MM1400.473).

References

[1] Akbari, S., Tavallaee, H.A. and Khalashi Ghezelahmad, S., 2012. Intersection graph of submodules of a module. J. Algebra, Appl., 11, 1250019. doi:10.1142/S0219498811005452
[2] Amini, A., Amini, B., Momtahan, E. and Shirdareh Haghighi, M.H., 2012. On a graph of ideals. Acta Math. Hungar, 134, 369-384. doi:10.1007/s10474-011-0121-3
[3] Anderson, D.F. and Livingston, P.S., 1999. The zero-divisor graph of a commutative ring. J. Algebra, 217, 434-447. doi:10.1006/jabr. 1998.7840
[4] Beck I., 1988. Coloring of commutative rings. J. Alge,bra, 116, 208-226. doi:10.1016/0021-8693(88)90202-5
[5] Bosak, J., 1964. The graph of semigroups. In theory of Graphs and Application, Academic Press, New York, pp. 119-125.
[6] Csakany, B. and Pollak, G., 1962. The graph of subgroups of a finite group. Czechoslovak Math. J., 19, 241-247. doi:10.21136/CMJ.1969.100891
[7] Dauns, J. and Zhou Y., 2006. Classes of Modules, Chapman and Hall.
[8] Javdannezhad, S.M., Mousavinasab, S.F., Shirali, M. and Shirali, N., 2022. On α parallel short modules. Journal of Advanced Mathematical Modeling. 12(3), 437-447. doi:10.22055/JAMM.2022.41194.2053
[9] Karamzadeh, O.A.S., Sajedinejad, A.R., 2001. Atomic modules. Comm. Algebra, 29(7), 2757-2773. doi:10.1081/AGB-4985
[10] Shirali, M., Momtahan, E. and Safaeeyan, S., 2020. Perpendicular graph of modules. Hokkaido Math. J., 49, 463-479. doi:10.14492/hokmj/1607936538
[11] Shirali, M. and Safaeeyan, S., 2023. Further studies of perpendicular graph of modules. Journal of Algebraic Systems, 12(2), 391-401. doi:10.22044/JAS.2023.11606.1587
[12] Shirali, M. and Shirali, N., 2022. On parallel Krull dimension of modules. Comm. Algebra, 50(12), 5284-5295. doi:10.1080/00927872.2022.2084549
[13] Stenström, B., 1975. Rings of quotients. Springer-Verlag, New York.
[14] West, D.B., 2001. Introduction to Graph Theory. 2nd edu., Prentice Hall, Upper Saddle River.

Nasrin Shirali
Department of Mathematics,
Faculty of Mathematical Sciences and Computer, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Email: shirali_n@scu.ac.ir, nasshirali@gmail.com

Maryam Shirali

Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Email: maryam.shirali98@yahoo.com
(c) (1) © (8) (c)2024 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution-NonComertial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

