بررسی وجود جواب برای یک مساله‌ی مقدار مرزی مرتبه‌ی ششم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران

چکیده

در این مقاله، با استفاده از روش تغییراتی نشان می‌دهیم یک مساله مقدار مرزی از مرتبه‌ی ششم دارای بی‌نهایت جواب می‌باشد. در واقع با بهره‌گیری از یک قضیه نقطه بحرانی، شرایطی کافی ارائه خواهیم کرد تا مسأله یک دنباله از جواب‌ها در یک فضای توابع مناسب داشته باشد. حالت‌های خاص و مثال از نتایج نیز بیان شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

On the existence of solutions for a sixth-order boundary value problem

نویسندگان [English]

  • Saeid Shokooh
  • Hadis Ghezelseflou
  • Razieh Farokhzad Rostami
Department of Mathematics, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

In this paper, by employing the variational method, we show that a boundary value problem of sixth order has infinitely many solutions. In fact, via a critical point theorem, we will present sufficient conditions such that the problem has a sequence of solutions in a suitable function space. Specific cases and an examples of results are also stated.

کلیدواژه‌ها [English]

  • Critical point
  • Variational method
  • Boundary value problems
[1] Abdolrazaghi, F., Razani, A. and Mirzaei, R., 2020. Multiple weak solutions for a kind
of time­dependent equation involving singularity, Filomat, 34(13), pp.4567–4574. doi:
10.2298/FIL2013567A
[2] Bonanno, G., Candito, P. and Oregan, D., 2021. Existence of nontrivial solutions for sixth­order differential equations, Mathematics, 9(16), 1852. doi: 10.3390/math9161852
[3] Bonanno, G. and Livrea, R., 2021. A sequence of positive solutions for sixth­order ordinary nonlinear differential problems, Electron. J. Qual. Theory Differ. Equ., 20, pp.1–17. doi:
10.14232/ejqtde.2021.1.20
[4] Bonanno, G. and Molica Bisci, G., 2009. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009, pp.1–20. doi: 10.1155/2009/670675
[5] Chaparova, J.V., Peletier, L.A. and Tersian, S.A., 2004. Existence and nonexistence of nontrivial solutions of semilinear sixth­order ordinary differential equations, Appl. Math. Lett., 17(10), pp.1207–1212. doi: 10.1016/j.aml.2003.05.014
[6] Ghobadi, A. and Heidarkhani, S., 2023. Variational approach for an elastic beam equation with local nonlinearities, Ann. Polon. Math., 130, pp.201–222. doi: 10.4064/ap220519­20­10
[7] Glatzmaier, G.A., 1985. Numerical simulations of stellar convective dynamics iii: at the base of the convection zone, Astrophys J., 31(1­2), pp.137–150. doi: 10.1080/03091928508219267
[8] Martinez, A. L. M., Pendeza Martinez, C. A., Bressan, G. M., Souza, R. M. and Meier, E. W., 2021.
Multiple solutions for a sixth order boundary value problem, Trends in comput. Appl. Math., 22(1),
pp.1–12. doi: 10.5540/tcam.2021.022.01.00001
[9] Moller, M. and Zinsou, B., 2013. Sixth order diffrential operators with eigenvalue dependent boundary conditions, Appl. Anal. Discret. Math., 7(2), pp.378–389. doi: 10.2298/AADM130608010M
[10] Shokooh, S., 2023. Existence of solutions for a sixth­order nonlinear equation, Rend. Circ. Mat.
Palermo(2), 72, pp.4251–4271. doi: 10.1007/s12215­023­00901­8
[11] Shokooh, S., 2023. Variational techniques for a system of sturm­liouville equations, J. Elliptic
Parabol. Equ., 9, pp.595–610. doi: 10.1007/s41808­023­00217­9
[12] Shokooh, S., 2020. On a model of nonlinear differential equation with variable exponent
by variational method, Journal of Advanced Mathmatical Modeling, 10(2), pp.453–472. doi:
10.22055/JAMM.2020.31804.1784
[13] Xia, M., Zhang, X., Kang, D. and Liu, C., 2022. Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity, AIMS Mathematics, 7(1), pp.579–605. doi:10.3934/math.2022037