یک روش عددی مبتنی بر توابع متعامد لگاریتمی تعمیم یافته برای حل معادلات انتگرال ولترای کوردیال نوع سوم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

 این مقاله به حل معادلات انتگرال ولترای کوردیال نوع سوم می‌پردازد. برای این هدف، ابتدا توابع متعامد لگاریتمی تعمیم‌یافته معرفی و خواص آنها بررسی می‌شود. پس از آن با استفاده از این توابع به عنوان پایه در روش طیفی‌ هم‌محلی، روشی عددی برای تقریب جواب این نوع معادلات انتگرال ارائه می‌شود. سپس خطای تقریب و آنالیز همگرایی برای روش ارائه شده نیز مورد بررسی قرار می‌گیرد. همچنین، برای سنجش کارایی و دقت روش پیشنهادی، چند مثال عددی در نظر گرفته شده است. نتایج عددی حاصل‌شده نشان می‌دهند که روش توابع متعامد لگاریتمی تعمیم‌یافته در مقایسه با برخی از روش‌های ارائه شده قبلی کارآمدتر و دقیق تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A numerical method based on generalized log orthogonal functions for solving cordial Volterra integral equations of the third kind

نویسندگان [English]

  • Fakhrodin Mohammadi
  • Saeideh Tayebinejad
University of Hormozgan
چکیده [English]

‎This paper is devoted to solving cordial Volterra integral equations of the third kind‎. First, ‎generalized log orthogonal functions are introduced and their properties is investigated. ‎Then by using this kind of orthogonal functions as basis function in spectral collocation method, a numerical method is proposed to solve this kind of integral equations. ‎ ‎The approximation error and convergence analysis of the presented method are investigated‎. In order to verify the efficiency and accuracy of the presented method ‎‎ ‎several numerical examples have been considered‎. ‎A comparison of the obtained results demonstrates that the current method is less expensive and more efficient than some previously proposed methods‎.

کلیدواژه‌ها [English]

  • Cordial Volterra integral equations
  • Generalized log orthogonal functions
  • Collocation method
[1] Allaei, S.S., Yang, Z.W. and Brunner, H., 2015. Journal of Integral Equations and Applications, 27, pp.325−342. doi: 10.1216/JIE­2015­27­3­325
[2] Bart, G.R. and Warnock, R.L., 1973. Linear integral equations of the third kind. SIAM Journal on
Mathematical Analysis, 4(4), pp.609−622. doi: 10.1137/0504053
[3] Bareiss, E.H. and Abu­Shumays, I.K., 1969. On the structure of isotropic transport operators in space. Transport Theory, SIAM­AMS Proceedings, AMS, Providence, Rhode Island, 1 pp.37−78.
[4] Bhat, I.A. and Mishra, L.N., 2022. Numerical solutions of Volterra integral equations of third kind and its convergence analysis. Symmetry, 14(12), pp.2600. doi: 10.3390/sym14122600
[5] Boyd, J.P., 2001. Chebyshev and Fourier spectral methods. Courier Dover Publications.
[6] Boyd, J.P., 1987. Exponentially convergent Fourier­Chebshev quadrature schemes on bounded and infinite intervals. Journal of scientific computing, 2, pp.99−109. doi: 10.1007/BF01061480
[7] Boyd, J.P., 1987. Spectral methods using rational basis functions on an infinite interval. Journal of computational physics, 69(1), pp.112−142. doi: 0021999187901586
[8] Brunner, H., 2017. Volterra Integral Equations: An Introduction to Theory and Applications (Vol. 30). Cambridge University Press.
[9] Case, K.M., and Zweifel, P.F., 1967. Linear Transport Theory. Addison−Wesley Publishing Company Reading Massachusetts.
[10] Chen, S. and Shen, J., 2018. Enriched spectral methods and applications to problems with weakly singular solutions. Journal of Scientific Computing, 77(3), pp.1468−1489. doi: 10.1007/s10915­018­0862­z
[11] Chen, S. and Shen, J., 2020. An efficient and accurate numerical method for the spectral fractional Laplacian equation. Journal of Scientific Computing, 82(1), pp.17. doi: 10.1007/s10915­019­01122­x
[12] Chen, S. and Shen, J., 2022. Log orthogonal functions: approximation properties and applications. IMA Journal of Numerical Analysis, 42(1), pp.712−743. doi: 10.1093/imanum/draa087
[13] Darbenas, Z. and Oliver, M., 2019. Uniqueness of solutions for weakly degenerate cordial Volterra integral equations. Journal of Integral Equations and Applications, 31, pp.307−327. doi: 10.1216/JIE2019­31­3­307
[14] Diogo, T. and Vainikko, G., 2013. Applicability of spline collocation to cordial Volterra equations. Mathematical Modelling and Analysis, 18(1), pp.1−21. doi: 10.3846/13926292.2013.756072
[15] Firoozjaee, M.A., 2021, November. Numerical solution of a class of third­kind Volterra integral equations using Ritz approximation. In Proceedings of the 6th International Conference on Combinatorics, Cryptography, Computer Science and Computing, Tehran, Iran, pp. 17−18.
[16] Kangro, U., 2017. Cordial Volterra integral equations and singular fractional integro­differential equations in spaces of analytic functions. Mathematical Modelling and Analysis, 22(4), pp.548−567. doi: 10.3846/13926292.2017.1333970
[17] Majidian, H., 2017. Efficient quadrature rules for a class of cordial Volterra integral equations: A comparative study. Bulletin of the Iranian Mathematical Society, 43(5), pp.1245−1258.
[18] Morin, P., Nochetto, R.H. and Siebert, K.G., 2002. Convergence of adaptive finite element methods. SIAM review, 44(4), pp.631−658. doi: 10.1137/S0036144502409093
[19] Nemati, S. and Lima, P.M., 2018. Numerical solution of a third­kind Volterra integral equation using an operational matrix technique. In 2018 European Control Conference (ECC), (pp. 3215−3220). IEEE. doi: 10.23919/ECC.2018.8550223
[20] Nemati, S., Lima, P.M. and Torres, D.F., 2021. Numerical solution of a class of third­kind
Volterra integral equations using Jacobi wavelets. Numerical Algorithms, 86, pp.675−691. doi:
10.48550/arXiv.2002.04736
[21] Schumack, M.R., Schultz, W.W. and Boyd, J.P., 1991. Spectral method solution of the Stokes equations on nonstaggered grids. Journal of Computational Physics, 94(1), pp.30−58. doi: 10.1016/0021­9991(91)90136­9
[22] Shayanfard, F., Dastjerdi, H.L. and Ghaini, F.M., 2019. A numerical method for solving Volterra integral equations of the third kind by multistep collocation method. Computational and Applied Mathematics, 38, pp.1−13. doi: 10.1007/s40314­019­0947­9
[23] Shen, J. and Wang, L.L., 2004. Error analysis for mapped Legendre spectral and pseudospectral methods. SIAM journal on numerical analysis, 42(1), pp.326−349. doi: 10.1137/S0036142903422065
[24] Shen, J. and Wang, Y., 2016. Müntz–Galerkin Methods and Applications to Mixed
Dirichlet–Neumann Boundary Value Problems. SIAM Journal on Scientific Computing, 38(4),
pp.A2357−A2381. doi:10.1137/15M1052391
[25] Shen, J., Tang, T. and Wang, L.L., 2011. Spectral methods: algorithms, analysis and applications (Vol. 41). Springer Science & Business Media.
[26] Strang, G. and Fix, G.J., 1973. An Analysis of the Finite Element Method. Prentice­Hall Series in
Automatic Computation, Englewood Cliffs, N. J: Prentice­Hall, Inc.
[27] Usta, F., 2021. Bernstein approximation technique for numerical solution of Volterra integral equations of the third kind. Computational and Applied Mathematics, 40(5), pp.161. doi: 10.1007/s40314­021­01555­x
[28] Vainikko, G., 2009. Cordial Volterra integral equations 1. Numerical Functional Analysis and Optimization, 30(9­10), pp.1145−1172. doi: 10.1080/01630560903393188
[29] Vainikko, G., 2010. Cordial Volterra integral equations 2. Numerical functional analysis and optimization, 31(2), pp.191−219. doi: 10.1080/01630561003666234
[30] Vainikko, G., 2010. Spline collocation for cordial Volterra integral equations. Numerical functional analysis and optimization, 31(3), pp.313−338. doi: 10.1080/01630561003757710
[31] Vainikko, G., 2010. Spline collocation­interpolation method for linear and nonlinear cordial
Volterra integral equations. Numerical functional analysis and optimization, 32(1), pp.83−109. doi:
10.1080/01630563.2010.526412
[32] Wang, L.L. and Shen, J., 2005. Error analysis for mapped Jacobi spectral methods. Journal of Scientific Computing, 24, pp.183−218. doi: 10.1007/s10915­004­4613­y
[33] Yang, Z.W., 2015. Second­kind linear Volterra integral equations with noncompact operators. Numerical Functional Analysis and Optimization, 36(1), pp.104−131. doi: 10.1080/01630563.2014.9517