In this paper, we first consider the concept of type Noetherian dimension of a module such as $M$, which is dual of the type Krull dimension, denoted by $\tndim\, (M)$, and defined to be the codeviation of the poset of the type submodules of $M$, then we dualize some basic results of type Krull dimension for type Noetherian dimension. In the following, we introduce the concept of $\alpha$-type short modules (i.e., for each type submodule $A$ of $M$, either $\ndim\, (\frac{M}{A})\leq \alpha$ or $\tndim\, (A)\leq \alpha$ and $\alpha$ is the least ordinal number with this property), and extend some basic results of $\alpha$-short modules to $\alpha$-type short modules. In particular, it is proved that if $M$ is an $\alpha$-type short module, then it has type Noetherian dimension and $\tndim\, (M)=\alpha$ or $\tndim\, (M)=\alpha+1$.
Shirali, N., Javdannezhad, S. M., & Kavoosi Ghafi, H. (2024). α-TYPE SHORT MODULES. Journal of Advanced Mathematical Modeling, 14(3-English), 41-53. doi: 10.22055/jamm.2024.47531.2296
Shirali, N., Javdannezhad, S. M., Kavoosi Ghafi, H. (2024). 'α-TYPE SHORT MODULES', Journal of Advanced Mathematical Modeling, 14(3-English), pp. 41-53. doi: 10.22055/jamm.2024.47531.2296
VANCOUVER
Shirali, N., Javdannezhad, S. M., Kavoosi Ghafi, H. α-TYPE SHORT MODULES. Journal of Advanced Mathematical Modeling, 2024; 14(3-English): 41-53. doi: 10.22055/jamm.2024.47531.2296