In this paper, we study the reaction-diffusion equation $\Delta u(x) = |u(x)|^{\gamma(x)-1} u(x) $ from a regularity point of view. This equation is used for modelling the distribution of a gas in an inhomogeneous porous catalyst. And the power $\gamma(x)$ can be a discontinuous function. In particular, we study the vanishing order of solution near the zero level set $\{u=0\}$.
Fotouhi, M. (2024). Regularity of a Reaction-Diffusion Equation in Inhomogeneous Porous Media. Journal of Advanced Mathematical Modeling, 14(4), 48-55. doi: 10.22055/jamm.2024.48150.2322
MLA
Fotouhi, M. . "Regularity of a Reaction-Diffusion Equation in Inhomogeneous Porous Media", Journal of Advanced Mathematical Modeling, 14, 4, 2024, 48-55. doi: 10.22055/jamm.2024.48150.2322
HARVARD
Fotouhi, M. (2024). 'Regularity of a Reaction-Diffusion Equation in Inhomogeneous Porous Media', Journal of Advanced Mathematical Modeling, 14(4), pp. 48-55. doi: 10.22055/jamm.2024.48150.2322
CHICAGO
M. Fotouhi, "Regularity of a Reaction-Diffusion Equation in Inhomogeneous Porous Media," Journal of Advanced Mathematical Modeling, 14 4 (2024): 48-55, doi: 10.22055/jamm.2024.48150.2322
VANCOUVER
Fotouhi, M. Regularity of a Reaction-Diffusion Equation in Inhomogeneous Porous Media. Journal of Advanced Mathematical Modeling, 2024; 14(4): 48-55. doi: 10.22055/jamm.2024.48150.2322