$\{\Phi_n,\Psi_n\}$-ابراشتقاق‌های لی پکسیدر روی جبرها

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ریاضی، دانشگاه پیام نور، صندوق پستی 3697-1939; تهران، ایران

چکیده

فرض کنید$ \mathcal{A} $و$ \mathcal{B} $دو جبر بوده و$ \lambda $،$ \varphi $و$ \psi $نگاشت‌هایی خطی از$ \mathcal{A} $ به$ \mathcal{B} $باشند.$ \lambda $را یک$ (\varphi,\psi) $-اشتقاق لی پکسیدر می‌نامیم، اگر برای هر$ a_1,a_2 \in \mathcal{A} $داشته باشیم$ \lambda([a_1,a_2])=[\varphi(a_1),a_2][a_1,\psi(a_2)]$،که در آن$[a_1,a_2]=a_1a_2 -a_2a_1$حاصل‌ضرب لی عناصر$a_1,a_2 \in \mathcal{A}$است.در این مقاله مفهوم یک$\{\Phi_n,\Psi_n\}$-ابراشتقاق‌ لی پکسیدر را به‌عنوان دنباله‌ای از نگاشت‌های خطی$ \{\Lambda_n\}_{n=0}^\infty $از$\mathcal{A}$به$\mathcal{B}$معرفی می‌کنیم که به ازای هر$ a_1,a_2 \in \mathcal{A} $و هر عدد صحیح نامنفی$ n $در رابطه\begin{equation*}\Lambda_n([a_1,a_2])=\sum_{i+j=n[\Phi_i(a_1),\Psi_j(a_2)],\end{equation*}صدق می‌کنند. سپس یک شناسه‌‌سازی از آن بر حسب دنباله‌ای از$ \{\varphi_n,\psi_n\} $-اشتقاق‌‌های لی پکسیدر$ \{\lambda_n\}_{n=1}^\infty $از$\mathcal{A}$به$\mathcal{B}$ارائه می‌دهیم. هم‌چنین نشان می‌دهیم که یک تناظر یک‌به‌یک بین مجموعه همه$\{\Phi_n,\Psi_n\}$-ابراشتقاق‌های‌ لی پکسیدر$ \{\Lambda_n\}_{n=0}^\infty $و مجموعه همه دنباله‌های$ \{\lambda_n\}_{n=1}^\infty $از$ \{\varphi_n,\psi_n\} $-اشتقاق‌‌های لی پکسیدر وجود دارد.\\[15pt]

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

‎P‎exider Lie $\{\Phi_n,\Psi_n\}$-higher derivations on algebras

نویسنده [English]

  • Sayed Khalil Ekrami
Department of Mathematics, Payame Noor University;P.O, Box 19395-3697, Tehran; Iran.
چکیده [English]

‎Let $ \mathcal{A} $ and $ \mathcal{B} $ be two algebras and $ \lambda‎, ‎\varphi $ and $ \psi $ be linear mappings from $ \mathcal{A} $ into $ \mathcal{B} $‎. ‎$ \lambda $ is said to be‎ ‎a pexider Lie $ (\varphi,\psi) $-derivation‎, ‎if $ \lambda([a_1,a_2])=[\varphi(a_1),a_2]‎ + ‎[a_1,\psi(a_2)]$ for all $ a_1,a_2 \in \mathcal{A} $‎, in which $[a_1,a_2]=a_1a_2‎ -‎a_2a_1$ is the Lie product of the elements $a_1,a_2 \in \mathcal{A}$‎.‎In this paper‎, ‎we introduce the concept of a pexider Lie $ \{\Phi_n,\Psi_n\} $-higher derivation as a sequence of linear mappings $ \{\Lambda_n\}_{n=0}^\infty $ from $\mathcal{A}$ into $\mathcal{B}$ satisfying the equation‎‎\begin{equation*}‎‎\Lambda_n([a_1,a_2])=\sum_{i+j=n}[\Phi_i(a_1),\Psi_j(a_2)]‎,‎\end{equation*}‎‎for all $ a_1,a_2 \in \mathcal{A} $ and all non-negative integers $ n $‎.
‎Then we characterize it in terms of sequence of pexider Lie $ \{\varphi_n,\psi_n\} $-derivations $ \{\lambda_n\}_{n=1}^\infty $ from $\mathcal{A}$ into $\mathcal{B}$‎. Also, we show that there is a one-to-one correspondence between the set of all pexider Lie $ \{\Phi_n,\Psi_n\} $-higher derivations $ \{\Lambda_n\}_{n=0}^\infty $ and the set of all ‎sequences‎ $ \{\lambda_n\}_{n=1}^\infty $ of pexider Lie $ \{\varphi_n,\psi_n\} $-derivations.

کلیدواژه‌ها [English]

  • ‎algebra
  • ‎‎Lie homomorphism
  • ‎‎Lie isomorphism
  • ‎‎Lie derivation‎
  • ‎Lie higher derivation
[1] Ali, Sh., 2012. On generalized ∗­derivations in ∗­rings. Palestine Journal of Mathematics, 1, pp.32–37.
[2] Cortes, W. and Haetinger, C., 2005. On Jordan generalized higher derivations in rings. Turkish Journal of Mathematics, 29, pp.1–10.
[3] Ekrami, S.Kh., 2024. A note on characterization of higher derivations and their product. Journal of Mahani Mathematical Research, 13(1), pp.403–415. doi:10.22103/jmmr.2023.21376.1432
[4] Ekrami, S.Kh., 2024. Characterization of Hilbert C∗
­module higher derivations. Georgian Mathematical Journal, 31(3), pp.397–403. doi:10.1515/gmj­2023­2085
[5] Ekrami, S.Kh., 2022. Jordan higher derivations, a new approach. Journal of Algebraic Systems, 10(1), pp.167–177. doi:10.22044/JAS.2021.10636.1527
[6] Ekrami, S.Kh., 2024. Local higher derivations on Hilbert C∗
­modules. Journal of Advanced Mathematical Modeling, 13(4), pp.524–533. doi:10.22055/JAMM.2024.44416.2189
[7] Haetinger, C., 2002. Higher derivations on Lie ideals. Tendencias em Matematica Aplicada e Computacional, 3, pp.141–145. doi:10.5540/tema.2002.03.01.0141
[8] Hasse, H. and Schmidt, F.K., 1937. Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten. J. Reine Angew. Math., 177, pp.215­237.
[9] Janfada, A.R., Saidi, H. and Mirzavaziri, M., 2015. Characterization of Lie higher derivations on C∗ algebras. Bulletin of the Iranian Mathematical Society, 41(4), pp.901–906.
[10] Jewell, N.P., 1977. Continuity of module and higher derivations. Pacific Journal of Mathematics, 68, pp.91–98.
[11] Johnson, B.E., 1996. Symmetric amenability and nonexistence of Lie and Jordan derivations. Math. Proc. Cambridge Philos. Soc., 120(3), pp.455–473.
[12] Johnson, B.E. and Sinclair, A.M., 1968. Continuity of derivations and a problem of Kaplansky. American Journal of Mathematics, 90, pp.1067–1073. doi: 10.2307/2373290
[13] Loy, R.J., 1973. Continuity of higher derivations. Proceedings of the American Mathematical Society, 5, pp.505–510.
[14] Matheiu, M. and Villena, A.R., 2003. The structure of Lie derivations on C∗
­algebras. Journal of Functional Analysis, 202(2), pp.504–525. doi:10.1016/S0022­1236(03)00077­6
[15] Miller, J.B., 2009. Higher derivations on Banach algebras. American Journal of Mathematics, 92 pp. 2233–2239.
[16] Mirzavaziri, M., 2010. Characterization of higher derivations on algebras. Communications in Algebra, 38, pp.981–987. doi:10.1080/00927870902828751
[17] Mirzavaziri, M., 2010. Prime higher derivations on algebras. Bulletin of the Iranian Mathematical Society, 36(1), pp 201–210.
[18] Mirzavaziri, M., Naranjani, K. and Niknam, A., 2010. Innerness of higher derivations. Banach J.
Math. Anal., 4(2), pp. 121­128.
[19] Nowicki, A., 1984. Inner derivations of higher orders. Tsukuba Journal of Mathematics, 8, pp.219– 225.
[20] Roy, A. and Sridharan, R., 1968. Higher derivations and central simple algebras. Nagoya Mathematical Journal, 32, pp.21–30.
[21] Xu, S. and Xiao, Z., 2014 Jordan higher derivation revisited. Gulf Journal of Mathematics, 2(1),
pp.11–21. doi:10.56947/gjom.v2i1.176