‎P‎exider Lie $\{\Phi_n,\Psi_n\}$-higher derivations on algebras

Document Type : Original Paper

Author

Department of Mathematics, Payame Noor University;P.O, Box 19395-3697, Tehran; Iran.

Abstract

‎Let $ \mathcal{A} $ and $ \mathcal{B} $ be two algebras and $ \lambda‎, ‎\varphi $ and $ \psi $ be linear mappings from $ \mathcal{A} $ into $ \mathcal{B} $‎. ‎$ \lambda $ is said to be‎ ‎a pexider Lie $ (\varphi,\psi) $-derivation‎, ‎if $ \lambda([a_1,a_2])=[\varphi(a_1),a_2]‎ + ‎[a_1,\psi(a_2)]$ for all $ a_1,a_2 \in \mathcal{A} $‎, in which $[a_1,a_2]=a_1a_2‎ -‎a_2a_1$ is the Lie product of the elements $a_1,a_2 \in \mathcal{A}$‎.‎In this paper‎, ‎we introduce the concept of a pexider Lie $ \{\Phi_n,\Psi_n\} $-higher derivation as a sequence of linear mappings $ \{\Lambda_n\}_{n=0}^\infty $ from $\mathcal{A}$ into $\mathcal{B}$ satisfying the equation‎‎\begin{equation*}‎‎\Lambda_n([a_1,a_2])=\sum_{i+j=n}[\Phi_i(a_1),\Psi_j(a_2)]‎,‎\end{equation*}‎‎for all $ a_1,a_2 \in \mathcal{A} $ and all non-negative integers $ n $‎.
‎Then we characterize it in terms of sequence of pexider Lie $ \{\varphi_n,\psi_n\} $-derivations $ \{\lambda_n\}_{n=1}^\infty $ from $\mathcal{A}$ into $\mathcal{B}$‎. Also, we show that there is a one-to-one correspondence between the set of all pexider Lie $ \{\Phi_n,\Psi_n\} $-higher derivations $ \{\Lambda_n\}_{n=0}^\infty $ and the set of all ‎sequences‎ $ \{\lambda_n\}_{n=1}^\infty $ of pexider Lie $ \{\varphi_n,\psi_n\} $-derivations.

Keywords

Main Subjects