[١ [اصغری، ز.، زارعی، ح. و اکبری، م. ق. (١۴٠١ .(آزمون آماری براساس فرضیه های فازی شهودی. سیستم های فازی و کاربردها، ۵)٢،(
.٢٩٢ -٢٧١
[٢ [چاچی ج. و چاجی ع. (١۴٠٠ ،(کاربرد عملگرهای وزنی در مدل رگرسیون قدرمطلق انحرافات مرتب شده، مجله علوم آماری، ١۵)١،( .۶٠ -٣٩
[٣ [چاچی، ج.، کاظمی فرد، ا. و فهیمی، ح. (١۴٠٠ ،(رهیافت تصمیم گیری های چند معیاره در ارزیابی نیکویی برازش مدل های آماری، سیستم های فازی و کاربردها، ۴)١ ،(٢۴٧ -٢۶٧.
[۴ [چاچی، ج. و چاجی، ع. (١٣٩٧ .(رویکردهای وزنی در برازش مدل های رگرسیون فازی، سیستم های فازی و کاربردها، ٢)١ ،(١٠۵-
.١١٧
[] Arefi, M. (2020). Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters. Soft Computing, 24(1), 311-320.
[] Arefi, M., & Khammar, A.H. (2023). Nonlinear prediction of fuzzy regression model based on quantile loss function. Soft Computing. https://doi.org/10.1007/s00500-023-09190-w.
[7] Asadolahi, M., Akbari, M. G., Hesamian, G., & Arefi, M. (2021). A Robust Support Vector Regression with Exact Predictors and Fuzzy Responses. International Journal of Approximate Reasoning, 132,
206-225. [] Bayarassou, H., & Megri A.F.(2023). New approach based on a fuzzy regression model for a photovoltaic system, Electric Power Systems Research, 217, 109091.
[] Celmins, A. (1987). Least Squares Model Fitting to Fuzzy Vector Data. Fuzzy sets and systems, 22(3), 245-269.
[10] Chachi, J. (2019). A Weighted Least Squares Fuzzy Regression for Crisp Input-Fuzzy Output Data. IEEE Transactions on Fuzzy Systems, 27(4), 739-748.
[11] Chachi, J., & Kazemifard, A. (2024). A Novel Extended Approach to Evaluate Criteria Weights in MADM Problems in Fuzzy Framework. Iranian Journal of Fuzzy Systems, 21(4), 101-122.
[12] Chachi, J., Kazemifard, A., & Jalalvand, M. (2021). A Multi-Attribute Assessment of Fuzzy Regression Models. Iranian Journal of Fuzzy Systems, 18(4), 131-148.
[13] Chachi, J., Taheri, S. M., & D’Urso, P. (2022). Fuzzy Regression Analysis Based on M-Estimates.
Expert Systems with Applications, 187, 115891.
[] Chakravarty, S., Demirhan, H., & Baser, F. (2020). Fuzzy Regression Functions with a Noise Cluster and the Impact of Outliers on Mainstream Machine Learning Methods in the Regression Setting. Applied Soft Computing, 96, 106535.
[15] Chukhrova, N., & Johannssen, A. (2019). Fuzzy Regression Analysis: Systematic Review and Bibliography. Applied Soft Computing, 106, 107331.
[16] Chukhrova, N., & Johannssen, A. (2020). Fuzzy hypothesis testing for a population proportion based on set-valued information Fuzzy Sets and Systems, 387, 127-157.
[17] Chukhrova, N., & Johannssen, A. (2021). Fuzzy hypothesis testing: Systematic review and bibliography Applied Soft Computing, 84, 105708.
[18] Chukhrova, N., & Johannssen, A. (2022). Two-tailed hypothesis testing for the median with fuzzy categories applied to the detection of health risks. Expert Systems with Applications, 192, 116362.
[19] Chukhrova, N., & Johannssen, A. (2023). Employing fuzzy hypothesis testing to improve modified
p charts for monitoring the process fraction nonconforming. Information Sciences, 633, 141-157.
[20] Diamond, P. (1988). Fuzzy Least Squares. Information Sciences, 46(3), 141-157.
[21] D’Urso, P., Chachi, J., Kazemifard, A., & De Giovanni, L. (2024). OWA-Based MultiCriteria Decision Making Based on Fuzzy Methods. Annals of Operations Research, p. 1-35,
https://doi.org/10.1007/s10479-024-05926-5.
[] D’Urso, P., De Giovanni, L., Alaimo, L. S., Mattera, R., & Vitale, V. (2023). Fuzzy Clustering with
Entropy Regularization for Interval-Valued Data with an Application to Scientific Journal Citations.
Annals of Operations Research, p. 1-24, https://doi.org/10.1007/s10479-023-05180-1.
[] D’Urso, P., & Leski, J. M. (2020). Fuzzy Clustering of Fuzzy Data Based on Robust Loss Functions
and Ordered Weighted Averaging. Fuzzy Sets and Systems, 389, 1-28.
[] Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press.
[] Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Sage publications.
[] Hesamian, G., & Akbari, M. G. (2017). Semi-parametric partially logistic regression model with exact
inputs and intuitionistic fuzzy outputs. Applied Soft Computing, 58, 517-526.
[] Hesamian, G., & Akbari, M. G. (2020). A fuzzy additive regression model with exact predictors and
fuzzy responses. Applied Soft Computing, 95, 106507.
[] Hesamian, G., & Akbari, M. G. (2020). A robust varying coefficient approach to fuzzy multiple regression model. Journal of Computational and Applied Mathematics, 371, 112704.
[] Hesamian, G., & Akbari, M. G. (2020). Fuzzy spline univariate regression with exact predictors and fuzzy responses. Journal of Computational and Applied Mathematics, 375, 112803.
[] Hesamian, G., & Akbari, M. G. (2023). Support Vector Logistic Regression Model with Exact Predictors and Fuzzy Responses. Journal of Ambient Intelligence and Humanized Computing, 14, 817-828.
[] Ronchetti, E. M., & Huber, P. J. (2009). Robust Statistics. Hoboken, NJ, USA: John Wiley & Sons.
[] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An Introduction to Statistical
Learning: with Applications in Python. Cham: Springer International Publishing
[] Kazemifard, A., & Chachi, J. (2022). MADM Approach to Analyse the Performance of Fuzzy Regression Models. Journal of Ambient Intelligence and Humanized Computing, 13(8), 4019-4031.
[] Khammar, A. H., Arefi, M., & Akbari, M. G. (2020). A Robust Least Squares Fuzzy Regression Model Based on Kernel Function. Iranian Journal of Fuzzy Systems, 17(4), 105-119.
[] Khammar, A. H., Arefi, M., & Akbari, M. G. (2021a). A general approach to fuzzy regression models based on different loss functions. Soft Computing, 25(2), 835-849.
[] Khammar, A. H., Arefi, M., & Akbari, M. G. (2021b). Quantile fuzzy varying coefficient regression
based on kernel function. Applied Soft Computing, 107, 107313.
[] Khasanzoda, N., Zicmane, I., Beryozkina, S., Safaraliev, M., Sultonov, S., & Kirgizov, A. (2022).
Regression model for predicting the speed of wind flows for energy needs based on fuzzy logic. Renewable Energy, 191, 723-731.
[38] Lubiano, M. A., de Saa, S. D. L. R., Montenegro, M., Sinova, B., & Gil, M. A. (2016). Descriptive
Analysis of Responses to Items in Questionnaires. Why not Using a Fuzzy Rating Scale?. Information Sciences, 360, 131-148.
[39] Lubiano, M. A., Montenegro, M., Sinova, B., de Saa, S. D. L. R., & Gil, M. A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications.
European Journal of Operational Research, 251(3), 918-929.
[40] Lubiano, M. A., Salas, A., & Gil, M. A. (2017). A hypothesis testing-based discussion on the sensitivity of means of fuzzy data with respect to data shape. Fuzzy Sets and Systems, 328, 54-69.
[41] Mohammadi, A., Javadi, S. H., & Ciuonzo, D. (2019). Bayesian fuzzy hypothesis test in wireless
sensor networks with noise uncertainty. Applied Soft Computing, 77, 218-224.
[42] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis. John Wiley & Sons.
[43] Mylonas, N., & Papadopoulos, B. (2021). Fuzzy hypotheses tests for crisp data using non-asymptotic fuzzy estimators, fuzzy critical values and a degree of rejection or acceptance. Evolving Systems, 12(3),
723-740.
[] Pandelara, D., Kristjanpoller, W., Michell, K., & Minutolo, M. C. (2022). A fuzzy regression causality approach to analyze relationship between electrical consumption and GDP. Energy, 239, 122459.
[45] Parchami, A. (2020). Fuzzy decision making in testing hypotheses: An introduction to the packages FPV. Iranian Journal of Fuzzy Systems, 17(2), 67-77.
[] Ruszczynski, A. (2011). Nonlinear Optimization. Princeton university press.
[] Salman, M., Long, X., Wang, G., & Zha, D. (2022). Paris climate agreement and global environmental
efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy, 168, 113128.
[] Tanaka, H., Uejima, S., & Asia, K. (1982). Linear Regression Analysis with Fuzzy Model. IEEE Trans.
Systems Man Cybern, 12, 903-907.
[] Viertl, R. (2011). Statistical Methods for Fuzzy Data. John Wiley & Sons.
[50] Zadeh, L.A., (1965). Fuzzy Sets. Information and Control, 8, 338-353.
[] Zhang, S., Robinson, E., & Basu, M. (2022). Hybrid Gaussian process regression and Fuzzy Inference System based approach for condition monitoring at the rotor side of a doubly fed induction generator. Renewable Energy, 198, 936-946.
[52] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.