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Abstract. In this study, new definitions of the Gray weight and the Gray map for

linear codes over R = Z25 + uZ25, where u2 = u are defined. Some results on self-dual

codes over R are investigated. Furthermore, the structural properties of quadratic residue

codes are also considered. Also two self-dual codes with parameters [22, 11, 6], [24, 12, 8]

over Z25 are obtained.

1. Introduction

Let Z25 denote the set of integers modulo 25. A set of n-tuples over Z25 is called a linear

code over Z25 or a Z25-code if it is a Z25-module. For a commutative ring R with identity

a cyclic code C of length n over R is an ideal of Rn = R[x]
〈xn−1〉 . Quadratic residue codes are

a special kind of cyclic codes with prime length introduced to construct self-dual codes

by adding an overall parity-check. Quadratic residue codes over finite fields have been

studied extensively in the last decades. Examples of quadratic residue codes include the

binary [7, 4, 3] Hamming code, the binary [23, 12, 7] Golay code and the ternary [11, 6, 5]

Golay code ([10], Ch. 6). Recently, Pless and Qian studied quadratic residue codes over

Z4 in [12]. Chiu et al. and Taeri studied the structure of quadratic residue codes over

Z8 and Z9, respectively, (see [6] and [13]). Self-dual codes over rings have been shown

to have many interesting connections to invariant theory, lattice theory and the theory
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of modular forms. For example, Bonnecaze et al. investigated the link between self-dual

codes and unimodular lattices in [4]. After that self-dual codes over Z8 and Z9 studied

in [8]. In continue a classification of self-dual codes of length 2 ≤ n ≤ 7 over Z25 were

given in [2]. So far self-dual codes over Z25 with large lengths have not been obtained.

The detection of self-dual codes over Z25 with larger lengths is the motivation of this

paper. The study of quadratic residue codes over the ring R = Z25 + uZ25, where u2 = u

is the core of this paper. The paper is organized as follows. In Section 2, we give some

preliminary results and define a distance preserving Gray map from the ring R to Z25
2.

In Section 3, we study quadratic residue codes with lengths p ≡ ±1 and p ≡ ±9 over R.

In Section 4, we give some examples of self-dual codes of large lengths over R.

2. Preliminaries

Let R = Z25 + uZ25, where u2 = u.R is a commutative ring with characteristic 25, and

R ' Z25[u]
<u2−u> . Two element u and 1 − u are primitive idempotents. Also, each element

r ∈ R can be uniquely expressed in the form au + b(1 − u). The finite ring R has the

following properties:

Any element r = au + b(1 − u) ∈ R is unit in R if and only if a 6≡ 0 (mod 5) and

b 6≡ 0 (mod 5). Let A be an element of GL2(Z25), i.e., invertible matrix of order 2 over

Z25. A map ϕ : R→ Z25
2 for any element r = au+ b(1− u) ∈ R is defined as:

ϕ(au+ b(1− u)) = (a, b)A.

For simplicity, (a, b)A is written as rA, where r = au+ b(1− u). Similarly, the map ϕ

can be extended as:

ϕ : Rn → Z25
2n

(c0, c1, . . . , cn−1)→ (c0A, c1A, . . . , cn−1A).

Definition 2.1. The map ϕ defined above is the Gray map from Rn to Z25
2n corre-

sponding to the invertible matrix A. The Lee weight of any au + b(1 − u) ∈ R is

defined as:wL(au + b(1 − u) = wH((a, b)A), where wH denotes the Hamming weight.

Let C be a code of length n over R, the Lee weight of c = (c0, c1, . . . , cn−1) ∈ C is

defined as the sum of Lee weight of all coordinates of c. The minimum Lee weight

of C is the minimum Lee weight of all codewords in C. A linear code C of length
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n over R is an R-submodule of Rn = (Z25 + uZ25)
n. Let x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) be two vectors of Rn. The inner product of x and y is defined as

〈x . y〉 = x1y1 + x2y2 + · · ·+ xnyn, where the operation is performed in R. The dual code

C⊥ of C is defined as C⊥ = {x ∈ Rn | 〈x . c〉 = 0 : ∀c ∈ C}. Code C is said to be

self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

Theorem 2.2. Gray map ϕ is a Z25- linear, one to one and onto map and also distance

preserving map from (Rn, Lee distance) to (Z25
2n, Hamming distance). Furthermore, let

C be a self-dual code of length n over R, and let A ∈ GL2(Z25) satisfies AAT = λI2, where

λ is a unit in Z25, A
T is the transposition of A and I2 is the identity matrix of order 2

over Z25. Then ϕ(C) is a self-dual code of length 2n over Z25.

Proof: Let c1 = (c10, c11, . . . , c1n) ∈ C and c2 = (c20, c21, . . . , c2n) ∈ C⊥, where, for

i = 1, 2 and j = 0, 1, 2, . . . , n − 1, cij = uaij + (1 − u)bij, aij, bij ∈ Z25. Now, from

c1.c2 = 0, we have

n−1∑
j=0

c1jc2j = u
n−1∑
j=0

a1ja2j + (1− u)
n−1∑
j=0

b1jb2j = 0.

Then

ϕ(c1).ϕ(c2) = (c10A, c11A, . . . , c1nA).(c20A, c21A, . . . , c2nA) =
n−1∑
j=0

(c1jA)(c2jA)T = 0.

So ϕ(C⊥) ⊆ ϕ(C)⊥. Since |ϕ(C)⊥ | = |ϕ(C⊥)|, then ϕ(C⊥) = ϕ(C)⊥. Note that,

C = C⊥ and |C ||C⊥ | = |R |n shows that dimC = n
2
. On the other hand

|ϕ(C) | = |C | = |R |
n
2 = (252)

n
2 = 25n.

So, dimϕ(C) = log25 25n = n. Also,since dimϕ(C)+dimϕ(C)⊥ = 2n, then dimϕ(C)⊥ =

n. Thereby ϕ(C) is a self-dual code. �

For a linear code C of length n over the ring R = Z25 + uZ25, let

C1 = {a ∈ Z25
n | ∃ b ∈ Z25

n : au+ b(1− u) ∈ C}

and

C2 = {b ∈ Z25
n | ∃a ∈ Z25

n : au+ b(1− u) ∈ C}.

Clearly, C1 and C2 are linear code of length n over Z25. Also, the linear code C can be

uniquely expressed as C = uC1 ⊕ (1− u)C2.
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Lemma 2.3. Let C be a linear code with lenght n over R = Z25 + uZ25, then C⊥ =

uC⊥1 ⊕ (1− u)C⊥2 . Also, C is a self-dual code if and only if both C1 and C2 are self-dual

code over Z25.

Proof: Similar to Proposition 3 in [9]. �

Definition 2.4. Let C be a code of length n over R and P (C) be its polynomial repre-

sentation, i.e.P (C) = {Σn−1
i=0 cix

i | (c0, c1, c2, . . . , cn−1) ∈ C}. A linear code C of length n

over R is a cyclic code if and only if P (C) is an ideal of the ring Rn = R[x]
〈xn−1〉 . The ideal

P (C) is called the ideal corresponding to code C.

Note that, a linear code C = uC1 ⊕ (1 − u)C2 is a cyclic code over R = Z25 + uZ25 if

and only if C1 and C2 are both cyclic code over Z25.

Theorem 2.5. (Theorem 3.4 in [11]) Suppose p is a prime not dividing n and C is a cyclic

Zpm-code. Then there exist a collection of pairwise-coprime polynomials F0, F1, . . . , Fm

such that F0F1 . . . Fm = xn − 1 and C = 〈F̂1, pF̂2, . . . , p
m−1F̂m〉, where F̂i = xn−1

Fi
, for

i = 1, 2, . . .m.�

An element e(x) ∈ Rn satisfying e2(x) = e(x) is called an idempotent. Equivalently, as

polynomials e2(x) ≡ e(x)(mod (xn− 1)). Each cyclic code over R contains a unique idem-

potent, which generates the ideal. This idempotent is called the generating idempotent

of the cyclic code.

Theorem 2.6. (i) Let C be a cyclic code of length n over a finite ring R generated

by the idempotent e(x) in quetiont ring R[x]
〈xn−1〉 , then C⊥ is generated by the idempotent

1− e(x−1).
(ii) Let C1 and C2 be cyclic codes of length n over a finite ring R generated by the

idempotents e1(x), e2(x) in R[x]
〈xn−1〉 , respectively. Then C1 ∩C2 and C1 +C2 are generated

by the idempotents e1(x)e2(x) and e1(x) + e2(x)− e1(x)e2(x), respectively.

Proof: Similar to Theorem 7 in [12].�

Let C be a cyclic code over Z25, then by Theorem 2.5, there exist uniqe monic polynomi-

als f(x), g(x), h(x) ∈ Z5[x], such that xn−1 = f(x)h(x)g(x) and C = 〈f(x)g(x), 5f(x)h(x)〉.

Lemma 2.7. Let C = uC1⊕(1−u)C2 be a cyclic code of length n over R = Z25+uZ25, then

C = 〈uf1(x)g1(x)+(1−u)f2(x)g2(x), 5uf1(x)h1(x)+5(1−u)f2(x)h2(x)〉, where xn−1 =
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f1(x)h1(x)g1(x) = f2(x)h2(x)g2(x), and for i = 1, 2, Ci = 〈fi(x)gi(x), 5fi(x)hi(x)〉 is a

cyclic code over Z25.

Proof: Let C = 〈uf1(x)g1(x) + (1− u)f2(x)g2(x), 5uf1(x)h1(x) + 5(1− u)f2(x)h2(x)〉.

Also, let C1 = 〈f1(x)g1(x), 5f1(x)h1(x)〉,and C2 = 〈f2(x)g2(x), 5f2(x)h2(x)〉.

Clearly C ⊆ C, and hence uC1 = uC, (1 − u)C2 = (1 − u)C. This implies that uC1 ⊕
(1− u)C2 ⊆ C. Thus C = C.�

Corollary 2.8. Let R = Z25 + uZ25, then R[X]
〈xn−1〉 is a principal ideal ring.

Proof: By notations Lemma 2.7, Let w(x) = f(x)g(x)+5f(x)h(x). Similar to Theorem

3.6 in [7], we can prove that C = 〈w(x)〉.�

Note that, the number of distinct cyclice codes of length n over R = Z25 + uZ25 is

25r, where r is number of the basic irreducible factors of xn − 1 over Z25. Now, Let

f(x) ∈ Z25[x], be a polynomial of degree k, then f ?(x) = xkf(x−1) will be denote its

reciprocal polynomial. Note that, (f(x)g(x))? = f ?(x)g?(x) for f(x), g(x) ∈ Z25[x]. In

fact, (f(x)g(x))? = f ?(x)g?(x) for f(x), g(x) ∈ Z25[x]
〈xn−1〉 , provided deg(f(x)g(x)) < n.

Lemma 2.9. Let C = 〈f(x)g(x), 5f(x)h(x)〉 be a cyclic code with odd length n over Z25,

where f(x), g(x) and h(x) are monic polynomials such that f(x)h(x)g(x) = xn − 1. Then

C is self-dual code if and only if f(x) = h?(x) and g(x) = g?(x).

Proof: The proof is similar to proof of Theorem 12 .3 .20 in [10] for cyclic codes over

Z4.�

Lemma 2.10. Let C = 〈uf1(x)g1(x)+(1−u)f2(x)g2(x), 5uf1(x)h1(x)+5(1−u)f2(x)h2(x)〉
be a cyclic code over R = Z25 + uZ25, where xn − 1 = f1(x)h1(x)g1(x) = f2(x)h2(x)g2(x)

and for i = 1, 2, Ci = 〈fi(x)gi(x), 5fi(x)hi(x)〉 is a cyclic code over Z25. Then C is self-

dual if and only if f2(x) = h∗2(x), g1(x) = g∗1(x) and f1(x) = h∗1(x), g2(x) = g∗2(x).

Proof: Since C⊥ = uC⊥1 ⊕ (1−u)C2
⊥, then C⊥ is cyclic code if and only if C is a cyclic

code. Also by Lemma 2.4, code C is self-dual over R = Z25 + uZ25 if and only codes C1

and C2 are both self-dual over Z25. Now, by Lemma 2.11, the proof is compelete.�

Since Z25 is a chain ring with unique maximal ideal 〈5〉, by Theorem 4.4 in [3], we have

the following lemma.



84 BAHRAM AHMADI AND MOHAMMAD REZA ALIMORADI∗

Lemma 2.11. Non-trivial cyclic self-dual codes of length n over Z25 exist if and only if

5i 6= −1(modn) for all positive integer i.

Lemma 2.12. Let C be a cyclic code of length n, over the ring R = Z25 + uZ25, and

gcd(n, 25) = 1, then there exists a unique idempotent element e(x) = ue1(x) + (1 −
u)e2(x) ∈ R[x] such that C = 〈e(x)〉.

Proof: Since gcd(n, 25) = 1, by Theorem 5.1 in [11], there exist unique idempotent

elements e1(x), e2(x) ∈ Z25[x], such that C1 = 〈e1(x)〉, C2 = 〈e2(x)〉. Then C = 〈ue1(x) +

(1 − u)e2(x)〉, let e(x) = ue1(x) + (1 − u)e2(x). Then e2(x) = ue21(x) + (1 − u)e22(x) =

ue1(x) + (1− u)e2(x) = e(x). So e(x) is an idempotent of code C. If there exists another

d(x) ∈ C, such that C = 〈d(x)〉, then d(x) ∈ C = (e(x)), thereby d(x) = a(x)e(x).

Then d(x)e(x) = a(x)e2(x) = a(x)e(x) and hence d(x) = e(x), which implies that e(x) is

unique.�

Lemma 2.13. Let C = uC1⊕ (1−u)C2 be a cyclic code of length n over R = Z25 +uZ25.

Let e(x) = ue1(x)⊕ (1− u)e2(x), where for i = 1, 2, ei(x) is generating idempotent of Ci

over Z25.Then 1− e(x−1) is the generating idempotent for dual code C⊥.

Proof: Remember that C⊥ = uC1
⊥ ⊕ (1− u)C2

⊥ and C⊥ is a cyclic code if and only if

C⊥1 , C
⊥
2 are both cyclic codes. By Theorem 2.7, we have C⊥i = 〈1− ei(x−1)〉, for i = 1, 2.

By Lemma 2.14, we have u(1− e1(x−1) + (1− u)(1− e2(x−1) = 1− e(x−1) is generating

idempotent for code C⊥.�

3. Quadratic Residue Codes Over R = Z25 + uZ25.

Quadratic residue codes are duadic codes over Zq of odd prime length n = p, where q

is a power of a prime number and q must be a square modulo n. We will let n = p be an

odd prime not dividing q, we will assume that q is a prime power that is a square modulo

p. Let Qp denote the set of nonzero squares modulo p and let Np be the set of nonsquares

modulo p. Let Q(x) = Σi∈Qpx
i, N(x) = Σi∈Npx

i and h(x) = 1 +Q(x) +N(x).

Theorem 3.1. The Legendre symbol (5
p
) = 1 if and only if p ≡ ±1 (mod 20) and p ≡

±9 (mod 20).

Proof: See Theorem 1.1 in [1].�

By Theorem 3.1 for considering quadratic residue code over Z5(and hence over Z25),

we must assume that p ≡ ±1 (mod 20) and p ≡ ± 9 (mod 20). By the introducing of
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quadratic residue codes over Z25 in [1], we now discuss the quadratic residue codes over

R = Z25+uZ25. We assume e1(x) and e2(x) be generating idempotent of quadratic residue

codes C1, C2, respectively. Then e(x) = ue1(x) + (1− u)e2(x) is a generating idempotent

for code C = uC1 ⊕ (1− u)C2.

By Theorem 2.7 in [1] and Lemma 2.14, we have the following definition.

Definition 3.2. Suppose that p = 20k + 1, then

(i) If k = 5t, letD1 = 〈u(1 +N(x)) + (1− u)(1 +Q(x))〉,
D2 = 〈u(1 +Q(x)) + (1− u)(1 +N(x))〉,
E1 = 〈24uQ(x) + (1− u)(24N(x))〉,
E2 = 〈24uN(x) + (1− u)(24Q(x))〉.

(ii) If k = 5t+ 1, letD1 = 〈u(20Q(x) + 11N(x) + 16) + (1−u)(11Q(x) + 20N(x) + 16)〉,
D2 = 〈u(11Q(x) + 20N(x) + 16) + (1− u)(20Q(x) + 11N(x) + 16)〉,
E1 = 〈u(14Q(x) + 5N(x) + 10) + (1− u)(5Q(x) + 14N(x) + 10)〉,
E2 = 〈u(5Q(x) + 14N(x) + 10) + (1− u)(14Q(x) + 5N(x) + 10)〉,

(iii) If k = 5t+ 2, letD1 = 〈u(15Q(x) + 21N(x) + 6) + (1− u)(21Q(x) + 15N(x) + 6)〉,
D2 = 〈u(21Q(x) + 15N(x) + 6) + (1− u)(15Q(x) + 21N(x) + 6)〉,
E1 = 〈u(4Q(x) + 10N(x) + 20) + (1− u)(10Q(x) + 4N(x) + 20)〉,
E2 = 〈u(10Q(x) + 4N(x) + 20) + (1− u)(4Q(x) + 10N(x) + 20)〉.

(iv) If k = 5t+ 3, letD1 = 〈u(6Q(x) + 10N(x) + 21) + (1− u)(10Q(x) + 6N(x) + 21))〉,
D2 = 〈u(10Q(x) + 6N(x) + 21) + (1− u)(6Q(x) + 10N(x) + 21)〉,
E1 = 〈u(19Q(x) + 15N(x) + 5) + (1− u)(15Q(x) + 19N(x) + 5)〉,
E2 = 〈u(15Q(x) + 19N(x) + 5) + (1− u)(19Q(x) + 15N(x) + 5)〉.

(v) If k = 5t+ 4, letD1 = 〈u(5Q(x) + 16N(x) + 11) + (1− u)(16Q(x) + 5N(x) + 11)〉,
D2 = 〈u(16Q(x) + 5N(x) + 11) + (1− u)(5Q(x) + 16N(x) + 11)〉,
E1 = 〈u(9Q(x) + 20N(x) + 15) + (1− u)(20Q(x) + 9N(x) + 15)〉,
E2 = 〈u(20Q(x) + 9N(x) + 15) + (1− u)(9Q(x) + 20N(x) + 15)〉.

These twenty cyclic codes are called the quadratic residue codes over Z25 + uZ25. Now,

Let a be an integer such that gcd(a, n) = 1, the function µa defined on {0, 1, . . . , n − 1}
by µa(i) ≡ ia(modn) is a permutation of the coordinate positions {0, 1, . . . , n − 1} of
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a cyclic code of length n and is called a multiplier. This map acts on any polynomials

f(x) = Σcix
i ∈ R[x] as µa(Σcix

i) = Σcix
ia.

Theorem 3.3. Let p = 20k + 1, then the following conditions on quadratic residue codes

does hold.

(i) If a ∈ Qp, then µa(Di) = Di and µa(Ei) = Ei. If a ∈ Np, then µa(Di) = Dj and

µa(Ei) = Ej, for i, j ∈ {1, 2} and i 6= j.

(ii)D1∩D2 = 〈l(x)〉 and D1+D2 = Rp, where l(x) is a suitable element of {h(x), 6h(x), 11h(x)

, 16h(x), 21h(x)}.
(iii)E1 ∩ E2 = {0} and E1 + E2 = 〈l(x)⊥〉.
(iv) For i = 1, 2, we have Di = Ei + 〈l(x)〉.
(v) For i = 1, 2, we have |Di | = 25p+1 and |Ei | = 25p−1.

(vi) E⊥1 = D2 and E⊥2 = D1.

Proof: (i) Let p = 20k + 1, we prove only the case k = 5t, other cases are proved

similarly. In this case l(x) = h(x). If a ∈ Np, then µa(u(24Q(x)) + (1 − u)(24N(x))) =

u(24N(x)) + (1− u)(24Q(x)). This shows that µa(E1) = E2. Similarly, we can show that

µa(E2) = E1 and µa(Di) = Dj, for i, j ∈ {1, 2} and i 6= j.

(ii) By Theorem 2.7, D1 ∩D2 = 〈(u(1 +Q(x)) + (1− u)(1 +N(x)))(u(1 +N(x)) + (1−
u)(1 +Q(x)))〉.

Since u(1+N(x))+(1−u)(1+Q(x))+u(1+Q(x))+(1−u)(1+N(x)) = 1+h(x), then

(u(1 +N(x)) + (1− u)(1 +Q(x)))h(x) = (u(1 +N(x)) + (1− u)(1 +Q(x)))(24 +

1 + h(x)) = 24(u(1 + N(x))) + (1 − u)(1 + Q(x))) + u(1 +N(x))2 + u(1 + N(x))(1 +

Q(x)) + (1− u)(1 +Q(x))2 + (1− u)(1 +N(x))(1 +Q(x)) = (u(1 +N(x)) + (1− u)(1 +

Q(x)))(u(1 +Q(x)) + (1− u)(1 +N(x))).

Since p = 20(5t) + 1 ≡ 1 (mod 25), then p−1
2
≡ 0 (mod 25), thereby

(u(1 +N(x)) + (1−u)(1 +Q(x)))(u(1 +Q(x)) + (1−u)(1 +N(x))) = (uQ(x) +N(x)−
uN(x) + 1)h(x) = u(p−1

2
)h(x) + (p−1

2
)h(x) − u(p−1

2
)h(x) + h(x) = h(x). This shows that

D1 ∩D2 = 〈h(x)〉. Again, by Theorem 2.7,

u(1+N(x))+(1−u)(1+Q(x))+u(1+Q(x))+(1−u)(1+N(x))− (u(1+N(x))+(1−
u)(1 +Q(x)))(u(1 +Q(x)) + (1− u)(1 +N(x))) is a generating idempotent for D1 +D2.

This shows that D1 +D2 = Rp.
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(iii) By Theorem 2.7, E1∩E2 = 〈(24uQ(x)+24(1−u)N(x))(24uN(x)+(1−u)(24Q(x))〉.As

24uQ(x) + 24(1− u)N(x) + 24uN(x) + 24(1− u)Q(x) = 1− h(x). Also

(24uQ(x) + 24(1 − u)N(x))(−h(x)) = (24uQ(x) + 24(1 − u)N(x))(24 + 1 − h(x) =

(24uQ(x) + 24(1 − u)N(x)) + (24uQ(x) + 24(1 − u)N(x))(24uQ(x) + 24(1 − u)N(x) +

24uN(x) + 24(1− u)Q(x)) = (24uQ(x) + 24(1− u)N(x))(24uN(x) + (1− u)(24Q(x)).

Since p−1
2
≡ 0 (mod 25), then (24uQ(x) + 24(1 − u)N(x)(−h(x)) = u(p−1

2
)h(x) +

(p−1
2

)(h(x)) − u(p−1
2

)(h(x)) = 0. This shows that E1 ∩ E2 = {0}. Again, by Theorem

2.7, we know that

24uQ(x)+24(1−u)N(x)+24uN(x)+24(1−u)Q(x)−(24uQ(x)+24(1−u)N(x))(24uN(x)+

(1− u)(24Q(x)), is a generating idempotent for code E1 +E2. This shows that E1 +E2 =

〈1− h(x)〉 = 〈h(x)〉⊥.

(iv) Theorem 2.7 shows that, E1 + 〈l(x)〉 has idempotent generator

24uQ(x) + 24(1− u)N(x) + h(x)− (24uQ(x) + 24(1− u)N(x))h(x).

Note that, (24uQ(x) + 24(1− u)N(x))(−h(x)) = 0. Then 24uQ(x) + 24(1− u)N(x) +

h(x) = u(1 + N(x)) + (1 − u)(1 + Q(x)). Therefore E1 + 〈l(x)〉 = D1. Similarly, we can

show that E2 + 〈l(x)〉 = D2.

(v) Since D1 +D2 = Rp and D1, D2 are equivalent, then we must have

252p = |D1 + D2 | = |D1 | |D2 |
|D1∩D2 | . Since |D1 ∩ D2 | = 252, then |D1 | = |D2 | = 25p+1.

Also,D1 = E1 + 〈l(x)〉 and (24uQ(x) + (1− u)(24N(x)))h(x) = 0, this shows that |E1 | =
25p−1.

Similarly, we can show that |E2 | = 25p−1.

(vi) As −1 ∈ Qp, by Theorem 2.7, the generating idempotent of E1
⊥ is

1− µ−1(24uQ(x) + (1− u)(24N(x))) = u(1 +Q(x)) + (1− u)(1 +N(x)) = D2.

Then E1
⊥ = D2. Similarly, we can show that E2

⊥ = D1.�

By Theorem 2.8 in [1] and Lemma 2.14, we have the following definition.

Definition 3.4. Suppose that p = 20k − 1, then

(i) If k = 5t, let D1 = 〈24uN(x) + (1− u)(24Q(x))〉,
D2 = 〈24uQ(x) + (1− u)(24N(x))〉,
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E1 = 〈u(1 +Q(x)) + (1− u)(1 +N(x))〉,
E2 = 〈u(1 +N(x)) + (1− u)(1 +Q(x))〉.

(ii) If k = 5t+ 1, let D1 = 〈u(9Q(x) + 20N(x) + 15) + (1− u)(20Q(x) + 9N(x) + 15)〉,
D2 = 〈u(20Q(x) + 9N(x) + 15) + (1− u)(9Q(x) + 20N(x) + 15)〉,
E1 = 〈u(5Q(x) + 16N(x) + 11) + (1− u)(16Q(x) + 5N(x) + 11)〉,
E2 = 〈u(16Q(x) + 5N(x) + 11) + (1− u)(5Q(x) + 16N(x) + 11)〉.

(iii) If k = 5t+ 2, let D1 = 〈u(19Q(x) + 15N(x) + 5) + (1− u)(15Q(x) + 19N(x) + 5)〉,
D2 = 〈u(15Q(x) + 19N(x) + 5) + (1− u)(19Q(x) + 15N(x) + 5)〉,
E1 = 〈u(10Q(x) + 6N(x) + 21) + (1− u)(6Q(x) + 10N(x) + 21)〉,
E2 = 〈u(6Q(x) + 10N(x) + 21) + (1− u)(10Q(x) + 6N(x) + 21)〉.

(iv) If k = 5t+ 3, let D1 = 〈u(4Q(x) + 10N(x) + 20) + (1−u)(10Q(x) + 4N(x) + 20))〉,
D2 = 〈u(10Q(x) + 4N(x) + 20) + (1− u)(4Q(x) + 10N(x) + 20)〉,
E1 = 〈u(15Q(x) + 21N(x) + 6) + (1− u)(21Q(x) + 15N(x) + 6)〉,
E2 = 〈u(21Q(x) + 15N(x) + 6) + (1− u)(15Q(x) + 21N(x) + 6)〉.

(v) If k = 5t+ 4, let D1 = 〈u(14Q(x) + 5N(x) + 10) + (1− u)(5Q(x) + 14N(x) + 10)〉,
D2 = 〈u(5Q(x) + 14N(x) + 10) + (1− u)(14Q(x) + 5N(x) + 10)〉,
E1 = 〈u(20Q(x) + 11N(x) + 16) + (1− u)(11Q(x) + 20N(x) + 16)〉,
E2 = 〈u(11Q(x) + 20N(x) + 16) + (1− u)(20Q(x) + 11N(x) + 16)〉.

This cyclic codes of length p are called the quadratic residue codes over R = Z25 +Z25.

Similar to Theorem 3.3, we have the same result.

Theorem 3.5. Let p = 20k− 1, then the following conditions on quadratic residue codes

does hold.

(i) If a ∈ Qp, then µa(Di) = Di and µa(Ei) = Ei. If a ∈ Np, then µa(Di) = Dj and

µa(Ei) = Ej, for i, j ∈ {1, 2} and i 6= j.

(ii)D1∩D2 = 〈l(x)〉 and D1+D2 = Rp, where l(x) is suitable element of {−h(x), 4h(x), 9h(x),

14h(x), 19h(x)}.
(iii)E1 ∩ E2 = {0} and E1 + E2 = 〈l(x)⊥〉.
(iv) For i = 1, 2, we have Di = Ei + 〈l(x)〉.
(v) For i = 1, 2, we have |Di | = 25p+1 and |Ei | = 25p−1.

(vi)E1, E2 are self-orthogonal code and for i ∈ {1, 2} we have, E⊥i = Di.
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Proof: We only need to prove part (iv), the proof of other parts are similar to Theorem

3.3, so we omit it. Let k = 5t, note that −1 ∈ Np and E1 has the idempotent generator

1− µ−1(u(1 +Q(x) + (1− u)(1 +N(x))) = u(−N(x)) + (1− u)(−Q(x)).

Then E1
⊥ = D2. Similarly, we can show that E2

⊥ = D1.�

The proof of the following theorem is similar to Theorem 3.3 and 3.5, so we omit it.

Theorem 3.6. Let p = 20k± 9, then the following conditions on quadratic residue codes

does hold.

(i) If a ∈ Qp, then µa(Di) = Di and µa(Ei) = Ei. If a ∈ Np, then µa(Di) = Dj and

µa(Ei) = Ej, for i, j ∈ {1, 2} and i 6= j.

(ii)D1∩D2 = 〈l(x)〉 and D1+D2 = Rp, where l(x) is suitable element of {14h(x), 19h(x),

−h(x), 4h(x), 9h(x)}, if p = 20k+9 and l(x) is suitable element of {16h(x), 21h(x), h(x),

6h(x), 11h(x)}, if p = 20k + 11.

(iii)E1 ∩ E2 = {0} and E1 + E2 = 〈l(x)⊥〉.
(iv) For i = 1, 2, we have Di = Ei + 〈l(x)〉.
(v) For i = 1, 2, we have |Di | = 25p+1 and |Ei | = 25p−1.

(vi) If p = 20k + 9, then E⊥1 = D2 and E⊥2 = D1. If p = 20k + 11, then two codes E1, E2

are self-orthogonal and for i ∈ {1, 2} we have E⊥i = Di.

Definition 3.7. The extended code of a quadratic residue code C over Z25 denoted

by C̄, which is the code obtained by adding a specific column to the generator ma-

trix of C. In other words extension C̄ of C is defined by C̄ = {c̄ | c ∈ C}, where

c̄ = (c∞, co, c1, . . . , cp−1), c∞ + c0 + c1 + · · ·+ cp−1 ≡ 0 (mod 25).

Let p = 20k + 1 we define D̃1 to be the Z25-code generated by the matrix

∞ 0 1 2 · · · p− 1

0

0 G1

.

.

1 1 1 1 · · · 1


,
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where each row of G1 is a cyclic shift of the −Q(x) when k = 5t, is a cyclic shift of the

14Q(x) + 5N(x) + 10 when k = 5t+ 1, is a cyclic shift of the 4Q(x) + 10N(x) + 20 when

k = 5t+ 2, is a cyclic shift of the 19Q(x) + 15N(x) + 5 when k = 5t+ 3, is a cyclic shift

of the 9Q(x) + 20N(x) + 15 when k = 5t+ 4. Similarly we define D̃2.

Theorem 3.8. (i) Let p = 20k − 1 and D1, D2 are quadratic residue codes over R also

D̄1, D̄2 denote their extended codes, then D̄1, D̄2 are self-dual codes.

(ii) Let p = 20k + 1, and D1, D2 are quadratic residue codes over R, then D̄1
⊥

= D̃2 and

D̄2
⊥

= D̃1.

Proof: (i) We only prove the case k = 5t + 1, other cases are proved similarly. By

Theorem 3.5, we have D1 = E1 + 〈4h〉. Also, D̄1 has the following generator matrix:

∞ 0 1 2 · · · p− 1

0

0 G1

.

.

24 4 4 4 · · · 4


,

where each row of G1 is a cyclic shift of the 5Q(x) + 16N(x) + 11. Since G1 is a gen-

erator matrix for code E1 and E1 is self-orthogonal (Theorem 3.5 (vi)), the rows of G1

are orthogonal to each other and also orthogonal to 4h (Theorem 3.5(iii)). We know that

the vector (24, 4h) is orthogonal to itself. This shows that D̄1 is self-orthogonal. Since

|D̄⊥1 | = |R|p+1 − |D̄1| = |D̄1|, then D̄1 is a self-dual code. Similarly, we can show that D̄2

is a self-dual code.

(ii) We prove only the case k = 5t + 2 the other cases are proved similarly. Note that,

in this case D1 = E1 + 〈11h〉, by Theorem 3.3 (iv). Then D̄1 has the following generator

matrix: 

∞ 0 1 2 · · · p− 1

0

0 G1

.

.

24 11 11 11 · · · 11


,
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where each row of G1 is a cyclic shift of the 4Q(x)+10N(x)+20. By Theorem 3.3 (vi), E1
⊥ =

D2 and G1 generate E1. Since the product of the vectors (24, 11, . . . , 11) and (1, 1, . . . , 1)

is 24 + 11 p ≡ 0 (mod 25), then any row in the above matrix is orthogonal to any row in

the matrix which defines D̃2. Then D̃2 ⊆ D̄1
⊥
. Since |D̃2| = |D̄1

⊥| = 25p+1, we must have

D̄1
⊥

= D̃2. Similarly, we can show that D̄2
⊥

= D̃1.�

The proof of the two following theorems is similar to Theorem 3.8, so we omit it.

Theorem 3.9. (i) Let p = 20k + 11 and D1, D2 are quadratic residue codes over R and

D̄1, D̄2 denote their extended codes. Then D̄1, D̄2 are self-dual codes.

(ii) If p = 20k + 9 and D1, D2 are quadratic residue codes over R, then D̄1
⊥

= D̃2 and

D̄2
⊥

= D̃1.

4. Numerical examples

In this section, some examples are given to illustrate the main work in this manuscript.

Let M =

(
2 2

−2 2

)
be a matrix of GL2(Z25). Clearly MM t = 8I2. Suppose that C

is a self-dual code of length n over the ring R = Z25 + uZ25 and ϕ be the Gray map

corresponding to matrix M. Theorem 2.2, shows that ϕ(C) is a self-dual code of length

2n over ring Z25.

Example 1. Since 5j 6= −1 (mod 11), for any positive integer j. Then Lemma 2.11,

shows that there exists a self-dual code of length 11 over ring R. Note that x11 − 1 =

(x+24)(x5+17x4+24x3+x2+16x+24)(x5+9x4+24x3+x2+8x+24) over Z25[x]. Now, let

g(x) = 1−x and f(x) = x5+17x4+24x3+x2+16x+24, then f ?(x) = −(x5+9x4+24x3+

x2 +8x+24). Therefore x11−1 = g(x)f(x)f ?(x). Let C1 = C2 = 〈f ?(x)g(x), 5f(x)f ?(x)〉.
By Lemma 2.10, code C = 〈f ?(x)g(x), 5f(x)f ?(x)〉 is a cyclic self-dual code over the ring

R = Z25 +uZ25. Theorem 2.2, shows that ϕ(C) is a cyclic self-dual code of length 22 over

Z25. The image of code C under Gray map ϕ is a code of dimension 11 with minimum

Hamming weight 6.

Example 2. Let p = 11. We considere the quadratic residue codes of length 11 over

R = Z25 + uZ25. Let Q11 denote the set of quadratic residue modulo 11 and N11 the set
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of non residue modulo 11. So, Q11 = {1, 3, 4, 5, 9} and N11 = {2, 6, 7, 8, 10}. Let

Q(x) =
∑
i∈Q11

xi, N(x) =
∑
j∈N11

xj.

Since 11 = 20k + 11, by Theorem 2.10 in [1], we have

D1 = 〈u(22Q(x) + 19N(x) + 21) + (1− u)(19Q(x) + 22N(x) + 21)〉,

D2 = 〈u(19Q(x) + 22N(x) + 21) + (1− u)(22Q(x) + 19N(x) + 21)〉,

E1 = 〈u(6Q(x) + 3N(x) + 5) + (1− u)(3Q(x) + 6N(x) + 5)〉,

E2 = 〈u(3Q(x) + 6N(x) + 5) + (1− u)(6Q(x) + 3N(x) + 5)〉,

are quadratic residue codes of length 11 over the ring R = Z25 + uZ25. Two codes E1 and

E2 have the following Z25-generator matrices respectively.

G1 =

(
uA1,1

(1− u)A1,2

)
and G2 =

(
uA2,1

(1− u)A2,2

)
,

where A1,1 = A2,2 = [I5 | B] and A1,2 = A2,1 = [I10 | B′T ]. Also, B and B′ are the

following matrices.

B =



1 16 7 24 15 8

17 23 10 17 7 1

24 1 16 8 1 24

1 15 8 18 23 9

16 7 2 15 8 1


, B′ =

(
3 6 3 3 3 6 6 6 3 6

)
.

Now, let D̄1 and D̄2 be the extension codes of D1 and D2, respectively. By Theorem

3.9, two codes D̄1 and D̄2 have the following generator matrices, respectively.

Ḡ1 =



∞ 0 1 2 · · · p− 1

0

0 G1

.

.

24 16 16 16 · · · 16


and Ḡ2 =



∞ 0 1 2 · · · p− 1

0

0 G2

.

.

24 16 16 16 · · · 16


.

Theorem 3.9, shows that two codes D̄1 and D̄2 are self-dual code of length 12 over the

ring R = Z25 + uZ25. Note that, | D̄i |=| Di |= 2512, for i = 1, 2. By Theorem 2.2, ϕ(D̄1)
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and ϕ(D̄2) are self-dual code of length 24 over Z25, dimension 12 and minimum Hamming

weight 8.
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