

SELF-DUAL CODES WITH LARGER LENGTHS OVER Z_{25}

BAHRAM AHMADI AND MOHAMMAD REZA ALIMORADI*

Communicated by: M. Haghighi

ABSTRACT. In this study, new definitions of the Gray weight and the Gray map for linear codes over $R = Z_{25} + uZ_{25}$, where $u^2 = u$ are defined. Some results on self-dual codes over R are investigated. Furthermore, the structural properties of quadratic residue codes are also considered. Also two self-dual codes with parameters [22, 11, 6], [24, 12, 8] over Z_{25} are obtained.

1. Introduction

Let Z_{25} denote the set of integers modulo 25. A set of *n*-tuples over Z_{25} is called a linear code over Z_{25} or a Z_{25} -code if it is a Z_{25} -module. For a commutative ring R with identity a cyclic code C of length n over R is an ideal of $R_n = \frac{R[x]}{\langle x^n - 1 \rangle}$. Quadratic residue codes are a special kind of cyclic codes with prime length introduced to construct self-dual codes by adding an overall parity-check. Quadratic residue codes over finite fields have been studied extensively in the last decades. Examples of quadratic residue codes include the binary [7, 4, 3] Hamming code, the binary [23, 12, 7] Golay code and the ternary [11, 6, 5] Golay code ([10], Ch. 6). Recently, Pless and Qian studied quadratic residue codes over Z_4 in [12]. Chiu et al. and Taeri studied the structure of quadratic residue codes over Z_8 and Z_9 , respectively, (see [6] and [13]). Self-dual codes over rings have been shown to have many interesting connections to invariant theory, lattice theory and the theory

MSC(2020): 94B05, 94B15.

Keywords: Gray weight, Self-dual codes, Quadratic residue codes.

Received: 23 April 2024, Accepted: 27 January 2024.

^{*}Corresponding author.

of modular forms. For example, Bonnecaze et al. investigated the link between self-dual codes and unimodular lattices in [4]. After that self-dual codes over Z_8 and Z_9 studied in [8]. In continue a classification of self-dual codes of length $2 \le n \le 7$ over Z_{25} were given in [2]. So far self-dual codes over Z_{25} with large lengths have not been obtained. The detection of self-dual codes over Z_{25} with larger lengths is the motivation of this paper. The study of quadratic residue codes over the ring $R = Z_{25} + uZ_{25}$, where $u^2 = u$ is the core of this paper. The paper is organized as follows. In Section 2, we give some preliminary results and define a distance preserving Gray map from the ring R to Z_{25}^2 . In Section 3, we study quadratic residue codes with lengths $p \equiv \pm 1$ and $p \equiv \pm 9$ over R. In Section 4, we give some examples of self-dual codes of large lengths over R.

2. Preliminaries

Let $R = Z_{25} + uZ_{25}$, where $u^2 = u \cdot R$ is a commutative ring with characteristic 25, and $R \simeq \frac{Z_{25}[u]}{\langle u^2 - u \rangle}$. Two element u and 1 - u are primitive idempotents. Also, each element $r \in R$ can be uniquely expressed in the form au + b(1 - u). The finite ring R has the following properties:

Any element $r = au + b(1 - u) \in R$ is unit in R if and only if $a \neq 0 \pmod{5}$ and $b \neq 0 \pmod{5}$. Let A be an element of $GL_2(Z_{25})$, i.e., invertible matrix of order 2 over Z_{25} . A map $\varphi : R \to Z_{25}^2$ for any element $r = au + b(1 - u) \in R$ is defined as:

$$\varphi(au + b(1 - u)) = (a, b)A.$$

For simplicity, (a, b)A is written as rA, where r = au + b(1 - u). Similarly, the map φ can be extended as:

$$\varphi: \mathbb{R}^n \to \mathbb{Z}_{25}^{2n}$$
$$(c_0, c_1, \dots, c_{n-1}) \to (c_0 A, c_1 A, \dots, c_{n-1} A).$$

Definition 2.1. The map φ defined above is the Gray map from R^n to Z_{25}^{2n} corresponding to the invertible matrix A. The Lee weight of any $au + b(1 - u) \in R$ is defined as: $w_L(au + b(1 - u)) = w_H((a, b)A)$, where w_H denotes the Hamming weight. Let C be a code of length n over R, the Lee weight of $c = (c_0, c_1, \ldots, c_{n-1}) \in C$ is defined as the sum of Lee weight of all coordinates of c. The minimum Lee weight of all codewords in C. A linear code C of length

n over *R* is an *R*-submodule of $R^n = (Z_{25} + uZ_{25})^n$. Let $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ be two vectors of R^n . The inner product of *x* and *y* is defined as $\langle x . y \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$, where the operation is performed in *R*. The dual code C^{\perp} of *C* is defined as $C^{\perp} = \{x \in R^n | \langle x . c \rangle = 0 : \forall c \in C\}$. Code *C* is said to be self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C = C^{\perp}$.

Theorem 2.2. Gray map φ is a Z_{25} - linear, one to one and onto map and also distance preserving map from $(\mathbb{R}^n, \text{ Lee distance})$ to $(Z_{25}^{2n}, \text{ Hamming distance})$. Furthermore, let C be a self-dual code of length n over \mathbb{R} , and let $A \in GL_2(Z_{25})$ satisfies $AA^T = \lambda I_2$, where λ is a unit in Z_{25}, A^T is the transposition of A and I_2 is the identity matrix of order 2 over Z_{25} . Then $\varphi(C)$ is a self-dual code of length 2n over Z_{25} .

Proof: Let $c_1 = (c_{10}, c_{11}, \ldots, c_{1n}) \in C$ and $c_2 = (c_{20}, c_{21}, \ldots, c_{2n}) \in C^{\perp}$, where, for i = 1, 2 and $j = 0, 1, 2, \ldots, n-1$, $c_{ij} = ua_{ij} + (1-u)b_{ij}, a_{ij}, b_{ij} \in Z_{25}$. Now, from $c_1.c_2 = 0$, we have

$$\sum_{j=0}^{n-1} c_{1j}c_{2j} = u \sum_{j=0}^{n-1} a_{1j}a_{2j} + (1-u) \sum_{j=0}^{n-1} b_{1j}b_{2j} = 0.$$

Then

$$\varphi(c_1).\varphi(c_2) = (c_{10}A, c_{11}A, \dots, c_{1n}A).(c_{20}A, c_{21}A, \dots, c_{2n}A) = \sum_{j=0}^{n-1} (c_{1j}A)(c_{2j}A)^T = 0.$$

So $\varphi(C^{\perp}) \subseteq \varphi(C)^{\perp}$. Since $|\varphi(C)^{\perp}| = |\varphi(C^{\perp})|$, then $\varphi(C^{\perp}) = \varphi(C)^{\perp}$. Note that, $C = C^{\perp}$ and $|C||C^{\perp}| = |R|^n$ shows that $\dim C = \frac{n}{2}$. On the other hand

$$|\varphi(C)| = |C| = |R|^{\frac{n}{2}} = (25^2)^{\frac{n}{2}} = 25^n.$$

So, $\dim \varphi(C) = \log_{25} 25^n = n$. Also, since $\dim \varphi(C) + \dim \varphi(C)^{\perp} = 2n$, then $\dim \varphi(C)^{\perp} = n$. Thereby $\varphi(C)$ is a self-dual code. \Box

For a linear code C of length n over the ring $R = Z_{25} + uZ_{25}$, let

$$C_1 = \{ a \in Z_{25}^n \, | \, \exists \, b \in Z_{25}^n : \, au + b(1-u) \in C \}$$

and

$$C_2 = \{ b \in Z_{25}^n \mid \exists a \in Z_{25}^n : au + b(1-u) \in C \}.$$

Clearly, C_1 and C_2 are linear code of length n over Z_{25} . Also, the linear code C can be uniquely expressed as $C = uC_1 \oplus (1-u)C_2$. **Lemma 2.3.** Let C be a linear code with lenght n over $R = Z_{25} + uZ_{25}$, then $C^{\perp} = uC_1^{\perp} \oplus (1-u)C_2^{\perp}$. Also, C is a self-dual code if and only if both C_1 and C_2 are self-dual code over Z_{25} .

Proof: Similar to Proposition 3 in [9]. \Box

Definition 2.4. Let *C* be a code of length *n* over *R* and P(C) be its polynomial representation, i.e. $P(C) = \{\sum_{i=0}^{n-1} c_i x^i \mid (c_0, c_1, c_2, \dots, c_{n-1}) \in C\}$. A linear code *C* of length *n* over *R* is a cyclic code if and only if P(C) is an ideal of the ring $R_n = \frac{R[x]}{\langle x^n - 1 \rangle}$. The ideal P(C) is called the ideal corresponding to code *C*.

Note that, a linear code $C = uC_1 \oplus (1-u)C_2$ is a cyclic code over $R = Z_{25} + uZ_{25}$ if and only if C_1 and C_2 are both cyclic code over Z_{25} .

Theorem 2.5. (Theorem 3.4 in [11]) Suppose p is a prime not dividing n and C is a cyclic Z_{p^m} -code. Then there exist a collection of pairwise-coprime polynomials F_0, F_1, \ldots, F_m such that $F_0F_1 \ldots F_m = x^n - 1$ and $C = \langle \hat{F}_1, p\hat{F}_2, \ldots, p^{m-1}\hat{F}_m \rangle$, where $\hat{F}_i = \frac{x^n - 1}{F_i}$, for $i = 1, 2, \ldots, m.\Box$

An element $e(x) \in R_n$ satisfying $e^2(x) = e(x)$ is called an idempotent. Equivalently, as polynomials $e^2(x) \equiv e(x) \pmod{(x^n - 1)}$. Each cyclic code over R contains a unique idempotent, which generates the ideal. This idempotent is called the generating idempotent of the cyclic code.

Theorem 2.6. (i) Let C be a cyclic code of length n over a finite ring R generated by the idempotent e(x) in quetiont ring $\frac{R[x]}{\langle x^n-1\rangle}$, then C^{\perp} is generated by the idempotent $1 - e(x^{-1})$.

(ii) Let C_1 and C_2 be cyclic codes of length n over a finite ring R generated by the idempotents $e_1(x)$, $e_2(x)$ in $\frac{R[x]}{\langle x^n-1 \rangle}$, respectively. Then $C_1 \cap C_2$ and $C_1 + C_2$ are generated by the idempotents $e_1(x)e_2(x)$ and $e_1(x) + e_2(x) - e_1(x)e_2(x)$, respectively.

Proof: Similar to Theorem 7 in [12].

Let C be a cyclic code over Z_{25} , then by Theorem 2.5, there exist unique monic polynomials $f(x), g(x), h(x) \in Z_5[x]$, such that $x^n - 1 = f(x)h(x)g(x)$ and $C = \langle f(x)g(x), 5f(x)h(x) \rangle$.

Lemma 2.7. Let $C = uC_1 \oplus (1-u)C_2$ be a cyclic code of length n over $R = Z_{25} + uZ_{25}$, then $C = \langle uf_1(x)g_1(x) + (1-u)f_2(x)g_2(x), 5uf_1(x)h_1(x) + 5(1-u)f_2(x)h_2(x) \rangle$, where $x^n - 1 = (1-u)f_2(x)g_2(x)$.

 $f_1(x)h_1(x)g_1(x) = f_2(x)h_2(x)g_2(x)$, and for $i = 1, 2, C_i = \langle f_i(x)g_i(x), 5f_i(x)h_i(x) \rangle$ is a cyclic code over Z_{25} .

Proof: Let
$$\overline{C} = \langle uf_1(x)g_1(x) + (1-u)f_2(x)g_2(x), 5uf_1(x)h_1(x) + 5(1-u)f_2(x)h_2(x) \rangle$$
.
Also, let $C_1 = \langle f_1(x)g_1(x), 5f_1(x)h_1(x) \rangle$, and $C_2 = \langle f_2(x)g_2(x), 5f_2(x)h_2(x) \rangle$.

Clearly $\overline{C} \subseteq C$, and hence $uC_1 = u\overline{C}$, $(1-u)C_2 = (1-u)\overline{C}$. This implies that $uC_1 \oplus (1-u)C_2 \subseteq \overline{C}$. Thus $C = \overline{C}.\square$

Corollary 2.8. Let $R = Z_{25} + uZ_{25}$, then $\frac{R[X]}{\langle x^n - 1 \rangle}$ is a principal ideal ring.

Proof: By notations Lemma 2.7, Let w(x) = f(x)g(x) + 5f(x)h(x). Similar to Theorem 3.6 in [7], we can prove that $C = \langle w(x) \rangle$.

Note that, the number of distinct cyclice codes of length n over $R = Z_{25} + uZ_{25}$ is 25^r , where r is number of the basic irreducible factors of $x^n - 1$ over Z_{25} . Now, Let $f(x) \in Z_{25}[x]$, be a polynomial of degree k, then $f^*(x) = x^k f(x^{-1})$ will be denote its reciprocal polynomial. Note that, $(f(x)g(x))^* = f^*(x)g^*(x)$ for $f(x), g(x) \in Z_{25}[x]$. In fact, $(f(x)g(x))^* = f^*(x)g^*(x)$ for $f(x), g(x) \in \frac{Z_{25}[x]}{\langle x^n - 1 \rangle}$, provided deg(f(x)g(x)) < n.

Lemma 2.9. Let $C = \langle f(x)g(x), 5f(x)h(x) \rangle$ be a cyclic code with odd length n over Z_{25} , where f(x), g(x) and h(x) are monic polynomials such that $f(x)h(x)g(x) = x^n - 1$. Then C is self-dual code if and only if $f(x) = h^*(x)$ and $g(x) = g^*(x)$.

Proof: The proof is similar to proof of Theorem 12.3.20 in [10] for cyclic codes over Z_4 .

Lemma 2.10. Let $C = \langle uf_1(x)g_1(x) + (1-u)f_2(x)g_2(x), 5uf_1(x)h_1(x) + 5(1-u)f_2(x)h_2(x) \rangle$ be a cyclic code over $R = Z_{25} + uZ_{25}$, where $x^n - 1 = f_1(x)h_1(x)g_1(x) = f_2(x)h_2(x)g_2(x)$ and for $i = 1, 2, C_i = \langle f_i(x)g_i(x), 5f_i(x)h_i(x) \rangle$ is a cyclic code over Z_{25} . Then C is selfdual if and only if $f_2(x) = h_2^*(x), g_1(x) = g_1^*(x)$ and $f_1(x) = h_1^*(x), g_2(x) = g_2^*(x)$.

Proof: Since $C^{\perp} = uC_1^{\perp} \oplus (1-u)C_2^{\perp}$, then C^{\perp} is cyclic code if and only if C is a cyclic code. Also by Lemma 2.4, code C is self-dual over $R = Z_{25} + uZ_{25}$ if and only codes C_1 and C_2 are both self-dual over Z_{25} . Now, by Lemma 2.11, the proof is compelete.

Since Z_{25} is a chain ring with unique maximal ideal $\langle 5 \rangle$, by Theorem 4.4 in [3], we have the following lemma.

Lemma 2.11. Non-trivial cyclic self-dual codes of length n over Z_{25} exist if and only if $5^i \neq -1 \pmod{n}$ for all positive integer i.

Lemma 2.12. Let C be a cyclic code of length n, over the ring $R = Z_{25} + uZ_{25}$, and gcd(n, 25) = 1, then there exists a unique idempotent element $e(x) = ue_1(x) + (1 - u)e_2(x) \in R[x]$ such that $C = \langle e(x) \rangle$.

Proof: Since gcd(n, 25) = 1, by Theorem 5.1 in [11], there exist unique idempotent elements $e_1(x), e_2(x) \in Z_{25}[x]$, such that $C_1 = \langle e_1(x) \rangle$, $C_2 = \langle e_2(x) \rangle$. Then $C = \langle ue_1(x) + (1-u)e_2(x) \rangle$, let $e(x) = ue_1(x) + (1-u)e_2(x)$. Then $e^2(x) = ue_1^2(x) + (1-u)e_2^2(x) = ue_1(x) + (1-u)e_2(x) = e(x)$. So e(x) is an idempotent of code C. If there exists another $d(x) \in C$, such that $C = \langle d(x) \rangle$, then $d(x) \in C = (e(x))$, thereby d(x) = a(x)e(x). Then $d(x)e(x) = a(x)e^2(x) = a(x)e(x)$ and hence d(x) = e(x), which implies that e(x) is unique. \Box

Lemma 2.13. Let $C = uC_1 \oplus (1-u)C_2$ be a cyclic code of length n over $R = Z_{25} + uZ_{25}$. Let $e(x) = ue_1(x) \oplus (1-u)e_2(x)$, where for $i = 1, 2, e_i(x)$ is generating idempotent of C_i over Z_{25} . Then $1 - e(x^{-1})$ is the generating idempotent for dual code C^{\perp} .

Proof: Remember that $C^{\perp} = uC_1^{\perp} \oplus (1-u)C_2^{\perp}$ and C^{\perp} is a cyclic code if and only if C_1^{\perp}, C_2^{\perp} are both cyclic codes. By Theorem 2.7, we have $C_i^{\perp} = \langle 1 - e_i(x^{-1}) \rangle$, for i = 1, 2. By Lemma 2.14, we have $u(1 - e_1(x^{-1}) + (1-u)(1 - e_2(x^{-1})) = 1 - e(x^{-1})$ is generating idempotent for code C^{\perp} . \Box

3. Quadratic Residue Codes Over $R = Z_{25} + uZ_{25}$.

Quadratic residue codes are duadic codes over Z_q of odd prime length n = p, where qis a power of a prime number and q must be a square modulo n. We will let n = p be an odd prime not dividing q, we will assume that q is a prime power that is a square modulo p. Let Q_p denote the set of nonzero squares modulo p and let N_p be the set of nonsquares modulo p. Let $Q(x) = \sum_{i \in Q_p} x^i$, $N(x) = \sum_{i \in N_p} x^i$ and h(x) = 1 + Q(x) + N(x).

Theorem 3.1. The Legendre symbol $\left(\frac{5}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{20}$ and $p \equiv \pm 9 \pmod{20}$.

Proof: See Theorem 1.1 in [1].

By Theorem 3.1 for considering quadratic residue code over $Z_5(and hence over Z_{25})$, we must assume that $p \equiv \pm 1 \pmod{20}$ and $p \equiv \pm 9 \pmod{20}$. By the introducing of quadratic residue codes over Z_{25} in [1], we now discuss the quadratic residue codes over $R = Z_{25} + uZ_{25}$. We assume $e_1(x)$ and $e_2(x)$ be generating idempotent of quadratic residue codes C_1 , C_2 , respectively. Then $e(x) = ue_1(x) + (1-u)e_2(x)$ is a generating idempotent for code $C = uC_1 \oplus (1-u)C_2$.

By Theorem 2.7 in [1] and Lemma 2.14, we have the following definition.

$$\begin{aligned} & \text{Definition 3.2. Suppose that } p = 20k + 1, \text{ then} \\ & (i) \text{ If } k = 5t, \text{let } D_1 = \langle u(1 + N(x)) + (1 - u)(1 + Q(x)) \rangle, \\ & D_2 = \langle u(1 + Q(x)) + (1 - u)(24N(x)) \rangle, \\ & E_1 = \langle 24uQ(x) + (1 - u)(24Q(x)) \rangle, \\ & E_2 = \langle 24uN(x) + (1 - u)(24Q(x)) \rangle. \\ & (ii) \text{ If } k = 5t + 1, \text{ let } D_1 = \langle u(20Q(x) + 11N(x) + 16) + (1 - u)(11Q(x) + 20N(x) + 16) \rangle, \\ & D_2 = \langle u(11Q(x) + 20N(x) + 16) + (1 - u)(20Q(x) + 11N(x) + 16) \rangle, \\ & E_1 = \langle u(14Q(x) + 5N(x) + 10) + (1 - u)(5Q(x) + 14N(x) + 10) \rangle, \\ & E_2 = \langle u(5Q(x) + 14N(x) + 10) + (1 - u)(14Q(x) + 5N(x) + 10) \rangle, \\ & (iii) \text{ If } k = 5t + 2, \text{ let } D_1 = \langle u(15Q(x) + 21N(x) + 6) + (1 - u)(21Q(x) + 15N(x) + 6) \rangle, \\ & D_2 = \langle u(21Q(x) + 15N(x) + 6) + (1 - u)(15Q(x) + 21N(x) + 6) \rangle, \\ & E_1 = \langle u(4Q(x) + 10N(x) + 20) + (1 - u)(10Q(x) + 4N(x) + 20) \rangle, \\ & E_2 = \langle u(10Q(x) + 4N(x) + 20) + (1 - u)(10Q(x) + 4N(x) + 20) \rangle, \\ & (iv) \text{ If } k = 5t + 3, \text{ let } D_1 = \langle u(6Q(x) + 10N(x) + 21) + (1 - u)(10Q(x) + 6N(x) + 21) \rangle \rangle, \\ & D_2 = \langle u(10Q(x) + 6N(x) + 21) + (1 - u)(6Q(x) + 10N(x) + 21) \rangle, \\ & E_1 = \langle u(19Q(x) + 15N(x) + 5) + (1 - u)(15Q(x) + 19N(x) + 5) \rangle, \\ & (v) \text{ If } k = 5t + 4, \text{ let } D_1 = \langle u(5Q(x) + 16N(x) + 11) + (1 - u)(16Q(x) + 5N(x) + 11) \rangle, \\ & D_2 = \langle u(16Q(x) + 5N(x) + 11) + (1 - u)(5Q(x) + 16N(x) + 11) \rangle, \\ & E_1 = \langle u(20Q(x) + 20N(x) + 15) + (1 - u)(20Q(x) + 9N(x) + 15) \rangle, \\ & E_2 = \langle u(20Q(x) + 9N(x) + 15) + (1 - u)(9Q(x) + 20N(x) + 15) \rangle, \end{aligned}$$

These twenty cyclic codes are called the quadratic residue codes over $Z_{25} + uZ_{25}$. Now, Let *a* be an integer such that gcd(a, n) = 1, the function μ_a defined on $\{0, 1, \ldots, n-1\}$ by $\mu_a(i) \equiv ia(mod n)$ is a permutation of the coordinate positions $\{0, 1, \ldots, n-1\}$ of a cyclic code of length n and is called a multiplier. This map acts on any polynomials $f(x) = \Sigma c_i x^i \in R[x]$ as $\mu_a(\Sigma c_i x^i) = \Sigma c_i x^{ia}$.

Theorem 3.3. Let p = 20k + 1, then the following conditions on quadratic residue codes does hold.

(i) If $a \in Q_p$, then $\mu_a(D_i) = D_i$ and $\mu_a(E_i) = E_i$. If $a \in N_p$, then $\mu_a(D_i) = D_j$ and $\mu_a(E_i) = E_j$, for $i, j \in \{1, 2\}$ and $i \neq j$. (ii) $D_1 \cap D_2 = \langle l(x) \rangle$ and $D_1 + D_2 = R_p$, where l(x) is a suitable element of $\{h(x), 6h(x), 11h(x), 16h(x), 21h(x)\}$. (iii) $E_1 \cap E_2 = \{0\}$ and $E_1 + E_2 = \langle l(x)^{\perp} \rangle$. (iv) For i = 1, 2, we have $D_i = E_i + \langle l(x) \rangle$. (v) For i = 1, 2, we have $|D_i| = 25^{p+1}$ and $|E_i| = 25^{p-1}$. (vi) $E_1^{\perp} = D_2$ and $E_2^{\perp} = D_1$.

Proof: (i) Let p = 20k + 1, we prove only the case k = 5t, other cases are proved similarly. In this case l(x) = h(x). If $a \in N_p$, then $\mu_a(u(24Q(x)) + (1 - u)(24N(x))) =$ u(24N(x)) + (1 - u)(24Q(x)). This shows that $\mu_a(E_1) = E_2$. Similarly, we can show that $\mu_a(E_2) = E_1$ and $\mu_a(D_i) = D_j$, for $i, j \in \{1, 2\}$ and $i \neq j$.

(ii) By Theorem 2.7, $D_1 \cap D_2 = \langle (u(1+Q(x)) + (1-u)(1+N(x)))(u(1+N(x)) + (1-u)(1+Q(x))) \rangle$.

Since u(1+N(x)) + (1-u)(1+Q(x)) + u(1+Q(x)) + (1-u)(1+N(x)) = 1+h(x), then $(u(1+N(x)) + (1-u)(1+Q(x)))h(x) = (u(1+N(x)) + (1-u)(1+Q(x)))(24 + 1+h(x)) = 24(u(1+N(x))) + (1-u)(1+Q(x))) + u(1+N(x))^2 + u(1+N(x))(1+Q(x)) + (1-u)(1+Q(x))) + (1-u)(1+N(x))(1+Q(x)) = (u(1+N(x)) + (1-u)(1+Q(x))) + (1-u)(1+Q(x))) + (1-u)(1+N(x))(1+Q(x)) = (u(1+N(x)) + (1-u)(1+Q(x))) + (1-u)(1+N(x))).$

Since $p = 20(5t) + 1 \equiv 1 \pmod{25}$, then $\frac{p-1}{2} \equiv 0 \pmod{25}$, thereby

 $(u(1+N(x))+(1-u)(1+Q(x)))(u(1+Q(x))+(1-u)(1+N(x))) = (uQ(x)+N(x)-uN(x)+1)h(x) = u(\frac{p-1}{2})h(x) + (\frac{p-1}{2})h(x) - u(\frac{p-1}{2})h(x) + h(x) = h(x).$ This shows that $D_1 \cap D_2 = \langle h(x) \rangle.$ Again, by Theorem 2.7,

 $\begin{aligned} u(1+N(x)) + (1-u)(1+Q(x)) + u(1+Q(x)) + (1-u)(1+N(x)) - (u(1+N(x))) + (1-u)(1+Q(x)))(u(1+Q(x))) + (1-u)(1+N(x))) & is a generating idempotent for D_1 + D_2. \\ This shows that D_1 + D_2 = R_p. \end{aligned}$

(*iii*) By Theorem 2.7, $E_1 \cap E_2 = \langle (24uQ(x) + 24(1-u)N(x))(24uN(x) + (1-u)(24Q(x))) \rangle$. As 24uQ(x) + 24(1-u)N(x) + 24uN(x) + 24(1-u)Q(x) = 1 - h(x). Also

$$(24uQ(x) + 24(1 - u)N(x))(-h(x)) = (24uQ(x) + 24(1 - u)N(x))(24 + 1 - h(x)) = (24uQ(x) + 24(1 - u)N(x)) + (24uQ(x) + 24(1 - u)N(x))(24uQ(x) + 24(1 - u)N(x)) + (24uN(x) + 24(1 - u)Q(x)) = (24uQ(x) + 24(1 - u)N(x))(24uN(x) + (1 - u)(24Q(x))).$$

Since $\frac{p-1}{2} \equiv 0 \pmod{25}$, then $(24uQ(x) + 24(1-u)N(x)(-h(x))) = u(\frac{p-1}{2})h(x) + (\frac{p-1}{2})(h(x)) - u(\frac{p-1}{2})(h(x)) = 0$. This shows that $E_1 \cap E_2 = \{0\}$. Again, by Theorem 2.7, we know that

 $24uQ(x) + 24(1-u)N(x) + 24uN(x) + 24(1-u)Q(x) - (24uQ(x) + 24(1-u)N(x))(24uN(x) + (1-u)(24Q(x))), is a generating idempotent for code E_1 + E_2. This shows that E_1 + E_2 = (1-h(x)) = (h(x))^{\perp}.$

(iv) Theorem 2.7 shows that, $E_1 + \langle l(x) \rangle$ has idempotent generator

$$24uQ(x) + 24(1-u)N(x) + h(x) - (24uQ(x) + 24(1-u)N(x))h(x).$$

Note that, (24uQ(x) + 24(1-u)N(x))(-h(x)) = 0. Then 24uQ(x) + 24(1-u)N(x) + h(x) = u(1+N(x)) + (1-u)(1+Q(x)). Therefore $E_1 + \langle l(x) \rangle = D_1$. Similarly, we can show that $E_2 + \langle l(x) \rangle = D_2$.

(v) Since $D_1 + D_2 = R_p$ and D_1, D_2 are equivalent, then we must have $25^{2p} = |D_1 + D_2| = \frac{|D_1||D_2|}{|D_1 \cap D_2|}$. Since $|D_1 \cap D_2| = 25^2$, then $|D_1| = |D_2| = 25^{p+1}$. Also, $D_1 = E_1 + \langle l(x) \rangle$ and (24uQ(x) + (1-u)(24N(x)))h(x) = 0, this shows that $|E_1| = 25^{p-1}$.

Similarly, we can show that $|E_2| = 25^{p-1}$.

(vi) As $-1 \in Q_p$, by Theorem 2.7, the generating idempotent of E_1^{\perp} is

$$1 - \mu_{-1}(24uQ(x) + (1 - u)(24N(x))) = u(1 + Q(x)) + (1 - u)(1 + N(x)) = D_2.$$

Then $E_1^{\perp} = D_2$. Similarly, we can show that $E_2^{\perp} = D_1 \square$

By Theorem 2.8 in [1] and Lemma 2.14, we have the following definition.

Definition 3.4. Suppose that p = 20k - 1, then (*i*) If k = 5t, let $D_1 = \langle 24uN(x) + (1 - u)(24Q(x)) \rangle$, $D_2 = \langle 24uQ(x) + (1 - u)(24N(x)) \rangle$, $E_1 = \langle u(1+Q(x)) + (1-u)(1+N(x)) \rangle,$ $E_2 = \langle u(1+N(x)) + (1-u)(1+Q(x)) \rangle.$ (*ii*) If k = 5t + 1, let $D_1 = \langle u(9Q(x) + 20N(x) + 15) + (1 - u)(20Q(x) + 9N(x) + 15) \rangle$, $D_2 = \langle u(20Q(x) + 9N(x) + 15) + (1 - u)(9Q(x) + 20N(x) + 15) \rangle,$ $E_1 = \langle u(5Q(x) + 16N(x) + 11) + (1 - u)(16Q(x) + 5N(x) + 11) \rangle,$ $E_2 = \langle u(16Q(x) + 5N(x) + 11) + (1 - u)(5Q(x) + 16N(x) + 11) \rangle.$ (*iii*) If k = 5t + 2, let $D_1 = \langle u(19Q(x) + 15N(x) + 5) + (1 - u)(15Q(x) + 19N(x) + 5) \rangle$, $D_2 = \langle u(15Q(x) + 19N(x) + 5) + (1 - u)(19Q(x) + 15N(x) + 5) \rangle,$ $E_1 = \langle u(10Q(x) + 6N(x) + 21) + (1 - u)(6Q(x) + 10N(x) + 21) \rangle,$ $E_2 = \langle u(6Q(x) + 10N(x) + 21) + (1 - u)(10Q(x) + 6N(x) + 21) \rangle.$ (iv) If k = 5t + 3, let $D_1 = \langle u(4Q(x) + 10N(x) + 20) + (1 - u)(10Q(x) + 4N(x) + 20)) \rangle$, $D_2 = \langle u(10Q(x) + 4N(x) + 20) + (1 - u)(4Q(x) + 10N(x) + 20) \rangle,$ $E_1 = \langle u(15Q(x) + 21N(x) + 6) + (1 - u)(21Q(x) + 15N(x) + 6) \rangle,$ $E_2 = \langle u(21Q(x) + 15N(x) + 6) + (1 - u)(15Q(x) + 21N(x) + 6) \rangle.$ (v) If k = 5t + 4, let $D_1 = \langle u(14Q(x) + 5N(x) + 10) + (1 - u)(5Q(x) + 14N(x) + 10) \rangle$, $D_2 = \langle u(5Q(x) + 14N(x) + 10) + (1 - u)(14Q(x) + 5N(x) + 10) \rangle,$ $E_1 = \langle u(20Q(x) + 11N(x) + 16) + (1 - u)(11Q(x) + 20N(x) + 16) \rangle,$ $E_2 = \langle u(11Q(x) + 20N(x) + 16) + (1 - u)(20Q(x) + 11N(x) + 16) \rangle.$

This cyclic codes of length p are called the quadratic residue codes over $R = Z_{25} + Z_{25}$. Similar to Theorem 3.3, we have the same result.

Theorem 3.5. Let p = 20k - 1, then the following conditions on quadratic residue codes does hold.

(i) If $a \in Q_p$, then $\mu_a(D_i) = D_i$ and $\mu_a(E_i) = E_i$. If $a \in N_p$, then $\mu_a(D_i) = D_j$ and $\mu_a(E_i) = E_j$, for $i, j \in \{1, 2\}$ and $i \neq j$. (ii) $D_1 \cap D_2 = \langle l(x) \rangle$ and $D_1 + D_2 = R_p$, where l(x) is suitable element of $\{-h(x), 4h(x), 9h(x), 14h(x), 19h(x)\}$. (iii) $E_1 \cap E_2 = \{0\}$ and $E_1 + E_2 = \langle l(x)^{\perp} \rangle$. (iv) For i = 1, 2, we have $D_i = E_i + \langle l(x) \rangle$. (v) For i = 1, 2, we have $|D_i| = 25^{p+1}$ and $|E_i| = 25^{p-1}$. (vi) E_1, E_2 are self-orthogonal code and for $i \in \{1, 2\}$ we have, $E_i^{\perp} = D_i$. Proof: We only need to prove part (iv), the proof of other parts are similar to Theorem 3.3, so we omit it. Let k = 5t, note that $-1 \in N_p$ and E_1 has the idempotent generator

$$1 - \mu_{-1}(u(1 + Q(x) + (1 - u)(1 + N(x)))) = u(-N(x)) + (1 - u)(-Q(x))$$

Then $E_1^{\perp} = D_2$. Similarly, we can show that $E_2^{\perp} = D_1 \square$

The proof of the following theorem is similar to Theorem 3.3 and 3.5, so we omit it.

Theorem 3.6. Let $p = 20k \pm 9$, then the following conditions on quadratic residue codes does hold. (i) If $a \in Q_p$, then $\mu_a(D_i) = D_i$ and $\mu_a(E_i) = E_i$. If $a \in N_p$, then $\mu_a(D_i) = D_j$ and $\mu_a(E_i) = E_j$, for $i, j \in \{1, 2\}$ and $i \neq j$. (ii) $D_1 \cap D_2 = \langle l(x) \rangle$ and $D_1 + D_2 = R_p$, where l(x) is suitable element of $\{14h(x), 19h(x), -h(x), 4h(x), 9h(x)\}$, if p = 20k + 9 and l(x) is suitable element of $\{16h(x), 21h(x), h(x), 6h(x), 11h(x)\}$, if p = 20k + 11. (iii) $E_1 \cap E_2 = \{0\}$ and $E_1 + E_2 = \langle l(x)^{\perp} \rangle$. (iv) For i = 1, 2, we have $D_i = E_i + \langle l(x) \rangle$. (v) For i = 1, 2, we have $|D_i| = 25^{p+1}$ and $|E_i| = 25^{p-1}$. (vi) If p = 20k + 9, then $E_1^{\perp} = D_2$ and $E_2^{\perp} = D_1$. If p = 20k + 11, then two codes E_1, E_2 are self-orthogonal and for $i \in \{1, 2\}$ we have $E_i^{\perp} = D_i$.

Definition 3.7. The extended code of a quadratic residue code C over Z_{25} denoted by \overline{C} , which is the code obtained by adding a specific column to the generator matrix of C. In other words extension \overline{C} of C is defined by $\overline{C} = \{\overline{c} \mid c \in C\}$, where $\overline{c} = (c_{\infty}, c_o, c_1, \ldots, c_{p-1}), c_{\infty} + c_0 + c_1 + \cdots + c_{p-1} \equiv 0 \pmod{25}$.

Let p = 20k + 1 we define \tilde{D}_1 to be the Z_{25} -code generated by the matrix

$$\begin{pmatrix} \infty & 0 & 1 & 2 & \cdots & p-1 \\ 0 & & & & & \\ 0 & & G_1 & & & \\ & & & & & & \\ \cdot & & & & & & \\ 1 & 1 & 1 & 1 & \cdots & 1 \end{pmatrix},$$

where each row of G_1 is a cyclic shift of the -Q(x) when k = 5t, is a cyclic shift of the 14Q(x) + 5N(x) + 10 when k = 5t + 1, is a cyclic shift of the 4Q(x) + 10N(x) + 20 when k = 5t + 2, is a cyclic shift of the 19Q(x) + 15N(x) + 5 when k = 5t + 3, is a cyclic shift of the 9Q(x) + 20N(x) + 15 when k = 5t + 4. Similarly we define \tilde{D}_2 .

Theorem 3.8. (i) Let p = 20k - 1 and D_1, D_2 are quadratic residue codes over R also $\overline{D}_1, \overline{D}_2$ denote their extended codes, then $\overline{D}_1, \overline{D}_2$ are self-dual codes. (ii) Let p = 20k + 1, and D_1, D_2 are quadratic residue codes over R, then $\overline{D}_1^{\perp} = \widetilde{D}_2$ and $\overline{D}_2^{\perp} = \widetilde{D}_1$.

Proof: (i) We only prove the case k = 5t + 1, other cases are proved similarly. By Theorem 3.5, we have $D_1 = E_1 + \langle 4h \rangle$. Also, \overline{D}_1 has the following generator matrix:

$$\begin{pmatrix} \infty & 0 & 1 & 2 & \cdots & p-1 \\ 0 & & & & & \\ 0 & & G_1 & & & \\ & & & & & \\ & & & & & \\ 24 & 4 & 4 & 4 & \cdots & 4 \end{pmatrix},$$

where each row of G_1 is a cyclic shift of the 5Q(x) + 16N(x) + 11. Since G_1 is a generator matrix for code E_1 and E_1 is self-orthogonal (Theorem 3.5(vi)), the rows of G_1 are orthogonal to each other and also orthogonal to 4h (Theorem 3.5(iii)). We know that the vector (24, 4h) is orthogonal to itself. This shows that \overline{D}_1 is self-orthogonal. Since $|\overline{D}_1^{\perp}| = |R|^{p+1} - |\overline{D}_1| = |\overline{D}_1|$, then \overline{D}_1 is a self-dual code. Similarly, we can show that \overline{D}_2 is a self-dual code.

(ii) We prove only the case k = 5t + 2 the other cases are proved similarly. Note that, in this case $D_1 = E_1 + \langle 11h \rangle$, by Theorem 3.3 (iv). Then \overline{D}_1 has the following generator matrix:

$$\begin{pmatrix} \infty & 0 & 1 & 2 & \cdots & p-1 \\ 0 & & & & & \\ 0 & & G_1 & & \\ & & & & & \\ \cdot & & & & & \\ 24 & 11 & 11 & 11 & \cdots & 11 \end{pmatrix},$$

where each row of G_1 is a cyclic shift of the 4Q(x)+10N(x)+20. By Theorem 3.3 (vi), $E_1^{\perp} = D_2$ and G_1 generate E_1 . Since the product of the vectors $(24, 11, \ldots, 11)$ and $(1, 1, \ldots, 1)$ is $24 + 11 p \equiv 0 \pmod{25}$, then any row in the above matrix is orthogonal to any row in the matrix which defines \tilde{D}_2 . Then $\tilde{D}_2 \subseteq \bar{D}_1^{\perp}$. Since $|\tilde{D}_2| = |\bar{D}_1^{\perp}| = 25^{p+1}$, we must have $\bar{D}_1^{\perp} = \tilde{D}_2$. Similarly, we can show that $\bar{D}_2^{\perp} = \tilde{D}_1$.

The proof of the two following theorems is similar to Theorem 3.8, so we omit it.

Theorem 3.9. (i) Let p = 20k + 11 and D_1, D_2 are quadratic residue codes over R and $\overline{D}_1, \overline{D}_2$ denote their extended codes. Then $\overline{D}_1, \overline{D}_2$ are self-dual codes. (ii) If p = 20k + 9 and D_1, D_2 are quadratic residue codes over R, then $\overline{D}_1^{\perp} = \widetilde{D}_2$ and $\overline{D}_2^{\perp} = \widetilde{D}_1$.

4. Numerical examples

In this section, some examples are given to illustrate the main work in this manuscript. Let $M = \begin{pmatrix} 2 & 2 \\ -2 & 2 \end{pmatrix}$ be a matrix of $GL_2(Z_{25})$. Clearly $MM^t = 8I_2$. Suppose that C is a self-dual code of length n over the ring $R = Z_{25} + uZ_{25}$ and φ be the Gray map corresponding to matrix M. Theorem 2.2, shows that $\varphi(C)$ is a self-dual code of length 2n over ring Z_{25} .

Example 1. Since $5^j \neq -1 \pmod{11}$, for any positive integer j. Then Lemma 2.11, shows that there exists a self-dual code of length 11 over ring R. Note that $x^{11} - 1 = (x+24)(x^5+17x^4+24x^3+x^2+16x+24)(x^5+9x^4+24x^3+x^2+8x+24)$ over $Z_{25}[x]$. Now, let g(x) = 1-x and $f(x) = x^5+17x^4+24x^3+x^2+16x+24$, then $f^*(x) = -(x^5+9x^4+24x^3+x^2+8x+24)$. Therefore $x^{11}-1 = g(x)f(x)f^*(x)$. Let $C_1 = C_2 = \langle f^*(x)g(x), 5f(x)f^*(x) \rangle$. By Lemma 2.10, code $C = \langle f^*(x)g(x), 5f(x)f^*(x) \rangle$ is a cyclic self-dual code over the ring $R = Z_{25} + uZ_{25}$. Theorem 2.2, shows that $\varphi(C)$ is a cyclic self-dual code of length 22 over Z_{25} . The image of code C under Gray map φ is a code of dimension 11 with minimum Hamming weight 6.

Example 2. Let p = 11. We consider the quadratic residue codes of length 11 over $R = Z_{25} + uZ_{25}$. Let Q_{11} denote the set of quadratic residue modulo 11 and N_{11} the set

of non residue modulo 11. So, $Q_{11} = \{1, 3, 4, 5, 9\}$ and $N_{11} = \{2, 6, 7, 8, 10\}$. Let

$$Q(x) = \sum_{i \in Q_{11}} x^i, \ N(x) = \sum_{j \in N_{11}} x^j.$$

Since 11 = 20k + 11, by Theorem 2.10 in [1], we have

$$D_{1} = \langle u(22Q(x) + 19N(x) + 21) + (1 - u)(19Q(x) + 22N(x) + 21) \rangle,$$

$$D_{2} = \langle u(19Q(x) + 22N(x) + 21) + (1 - u)(22Q(x) + 19N(x) + 21) \rangle,$$

$$E_{1} = \langle u(6Q(x) + 3N(x) + 5) + (1 - u)(3Q(x) + 6N(x) + 5) \rangle,$$

$$E_{2} = \langle u(3Q(x) + 6N(x) + 5) + (1 - u)(6Q(x) + 3N(x) + 5) \rangle,$$

are quadratic residue codes of length 11 over the ring $R = Z_{25} + uZ_{25}$. Two codes E_1 and E_2 have the following Z_{25} -generator matrices respectively.

$$G_1 = \begin{pmatrix} uA_{1,1} \\ (1-u)A_{1,2} \end{pmatrix}$$
 and $G_2 = \begin{pmatrix} uA_{2,1} \\ (1-u)A_{2,2} \end{pmatrix}$,

where $A_{1,1} = A_{2,2} = [I_5 | B]$ and $A_{1,2} = A_{2,1} = [I_{10} | B'^T]$. Also, B and B' are the following matrices.

$$B = \begin{pmatrix} 1 & 16 & 7 & 24 & 15 & 8 \\ 17 & 23 & 10 & 17 & 7 & 1 \\ 24 & 1 & 16 & 8 & 1 & 24 \\ 1 & 15 & 8 & 18 & 23 & 9 \\ 16 & 7 & 2 & 15 & 8 & 1 \end{pmatrix}, B' = \begin{pmatrix} 3 & 6 & 3 & 3 & 3 & 6 & 6 & 6 & 3 & 6 \\ \end{pmatrix}.$$

Now, let $\bar{D_1}$ and $\bar{D_2}$ be the extension codes of D_1 and D_2 , respectively. By Theorem 3.9, two codes $\bar{D_1}$ and $\bar{D_2}$ have the following generator matrices, respectively.

$$\bar{G}_{1} = \begin{pmatrix} \infty & 0 & 1 & 2 & \cdots & p-1 \\ 0 & & & & & \\ 0 & & G_{1} & & & \\ \vdots & & & & & \\ 24 & 16 & 16 & 16 & \cdots & 16 \end{pmatrix} \text{ and } \bar{G}_{2} = \begin{pmatrix} \infty & 0 & 1 & 2 & \cdots & p-1 \\ 0 & & & & & \\ 0 & & G_{2} & & & \\ \vdots & & & & & \\ 24 & 16 & 16 & 16 & \cdots & 16 \end{pmatrix}.$$

Theorem 3.9, shows that two codes \bar{D}_1 and \bar{D}_2 are self-dual code of length 12 over the ring $R = Z_{25} + uZ_{25}$. Note that, $|\bar{D}_i| = |D_i| = 25^{12}$, for i = 1, 2. By Theorem 2.2, $\varphi(\bar{D}_1)$

and $\varphi(\bar{D}_2)$ are self-dual code of length 24 over Z_{25} , dimension 12 and minimum Hamming weight 8.

References

- [1] Alimoradi, M.R., 2024. Quadratic residue codes over Z_{25} . Communications of the Korean Mathematical Society (Accepted).
- [2] Balmaceda, J., Betty, R. and Nemenzo, F., 2008. Mass formula for self-dual codes over Z_{p²}. Discrete Math, 308, pp.2984–3002. doi.org/10.1016/j.disc.2007.08.024.
- [3] Batoul, A., Guenda, A. and Gulliver, T., 2014. On self-dual codes over finite chain rings. *Des. Codes Cryptogr*, 70, pp.347–358. doi. 10.1007/s10623-012-9696-0.
- Bonnecaze, A., Solé, P., Calderbank, A.R., 1995. Quaternary quadratic residue codes and unimodular lattices. *IEEE Trans. Inf. Theory*, 41(2), pp.366–377. doi: 10.1109/18.370138.
- [5] Burton, D.M, 2007. *Elementary Number Theory*, 6th Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- [6] Chiu, M.H., Yau, S.T., and Yu, Y., 2000. Z8-Cyclic Codes and Quadratic Residue Codes, Advances in Applied Mathematics, 25, pp.12–33. doi:10.1006/aama.2000.0687.
- [7] Dinh, H.Q., López-Permouth, S.R., 2004. Cyclic and negacyclic codes over finite chain rings. *IEEE Trans Inf Theory*, 50, pp.1728–1744. doi:10.1109/TIT.2004.831789.
- [8] Dougherty, S.T., Gulliver, T. and Wong, T., 2006. Self-dual codes over Z₈ and Z₉, Des. Codes. Cryptogr, 41, pp.235–249. doi:10.1007/s10623-006-9000-2
- [9] Ga, J., Wang, X. and Fu, F.W., 2015. Two self-dual codes with larger lengths over Z₉.Discrete Mathematics, Algorithms and Applications, 7(3), pp.1-14. doi: 10.1142/S1793830915500299
- [10] Huffman, W.C., Pless, V., 2003. Fundamentals of Error-Correcting Codes, Cambridge University Press Cambridge.
- [11] Kanwar, P., Lopez-Permouth, S.R, 1997. Cyclic codes over the integers modulo p^m. Finite Fields Appl. 3(4), pp.334–352. doi: 10.1006/ffta.1997.0189.
- [12] Pless, V., Qian, Z., 1996. Cyclic codes and quadratic residue codes over Z_4 . *IEEE Trans. Inform. Theory*, 42(5), pp.1594–1600. doi: 10.1109/18.532906.
- [13] Taeri, B., 2009. Quadratic residue codes over Z₉. J. Korean Math Soc, 46, pp.13-30. doi: 10.4134/JKMS.2009.46.1.013

Bahram Ahmadi	Mohammad Reza Alimoradi
Department of Mathematics,	Department of Mathematics,
Faculty of Mathematical Sciences and Statistics,	Faculty of Mathematical Sciences and Statistics,
Malayer University,	Malayer universiity,
Malayer, Iran.	Malayer, Iran.
Email: bahram.knout@gmail.com	Email: malimoradisharif@yahoo.com

© 2024 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution-NonComertial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).