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ABSTRACT. In this study, new definitions of the Gray weight and the Gray map for

2

linear codes over R = Zs5 + uZs;, where u® = u are defined. Some results on self-dual

codes over R are investigated. Furthermore, the structural properties of quadratic residue
codes are also considered. Also two self-dual codes with parameters [22,11, 6], [24, 12, §]

over Zss are obtained.

1. Introduction

Let Zy5 denote the set of integers modulo 25. A set of n-tuples over Zss is called a linear
code over Zys or a Zss-code if it is a Zys-module. For a commutative ring R with identity
a cyclic code C of length n over R is an ideal of R,, = %. Quadratic residue codes are
a special kind of cyclic codes with prime length introduced to construct self-dual codes
by adding an overall parity-check. Quadratic residue codes over finite fields have been
studied extensively in the last decades. Examples of quadratic residue codes include the
binary [7,4, 3] Hamming code, the binary [23,12,7] Golay code and the ternary [11,6, 5]
Golay code ([10], Ch. 6). Recently, Pless and Qian studied quadratic residue codes over
Z4 in [12]. Chiu et al. and Taeri studied the structure of quadratic residue codes over
Zg and Zy, respectively, (see [6] and [13]). Self-dual codes over rings have been shown
to have many interesting connections to invariant theory, lattice theory and the theory
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of modular forms. For example, Bonnecaze et al. investigated the link between self-dual
codes and unimodular lattices in [4]. After that self-dual codes over Zg and Zy studied
in [8]. In continue a classification of self-dual codes of length 2 < n < 7 over Zy5 were
given in [2]. So far self-dual codes over Zs5 with large lengths have not been obtained.
The detection of self-dual codes over Z,5 with larger lengths is the motivation of this
paper. The study of quadratic residue codes over the ring R = Zo5 + uZs5, where u? = u
is the core of this paper. The paper is organized as follows. In Section 2, we give some
preliminary results and define a distance preserving Gray map from the ring R to Zas°.

In Section 3, we study quadratic residue codes with lengths p = +1 and p = 49 over R.

In Section 4, we give some examples of self-dual codes of large lengths over R.

2. PRELIMINARIES

Let R = Zy5 + uZss, where u? = u.R is a commutative ring with characteristic 25, and
R ~ % Two element v and 1 — u are primitive idempotents. Also, each element

r € R can be uniquely expressed in the form au + b(1 — ). The finite ring R has the

following properties:

Any element r = au + b(1 — u) € R is unit in R if and only if @ # 0(mod5) and
b # 0(modb). Let A be an element of GLy(Zs5), i.e., invertible matrix of order 2 over
Zs. A map ¢ : R — Zys® for any element 7 = au + b(1 — u) € R is defined as:

plau+b(1 —u)) = (a,b)A.

For simplicity, (a,b)A is written as rA, where r = au + b(1 — u). Similarly, the map ¢

can be extended as:

(o R" — ZQ52n
(CO7 Cl,y. .- ,Cnfl) — <CoA, CIA, R ,CnflA).

Definition 2.1. The map ¢ defined above is the Gray map from R" to Z5°" corre-
sponding to the invertible matrix A. The Lee weight of any au + b(1 —u) € R is
defined as:wp(au + b(1 — u) = wy((a,b)A), where wy denotes the Hamming weight.
Let C be a code of length n over R, the Lee weight of ¢ = (cp,c1,...,¢-1) € C is
defined as the sum of Lee weight of all coordinates of ¢. The minimum Lee weight

of C is the minimum Lee weight of all codewords in C. A linear code C of length
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n over R is an R-submodule of R" = (Zy5 + uZss)". Let © = (x1,29,...,2,) and
y = (Y1,Y2,.-.,Yn) be two vectors of R". The inner product of z and y is defined as
(x.y) = 2191 + T2y2 + * - - + T, Yn, where the operation is performed in R. The dual code
C* of C is defined as C+ = {x € R"|(z.c) = 0 : Ve € C}. Code C is said to be
self-orthogonal if C' C C* and self-dual if C' = C+.

Theorem 2.2. Gray map p is a Zas- linear, one to one and onto map and also distance
preserving map from (R", Lee distance) to (Zos*", Hamming distance). Furthermore, let
C be a self-dual code of length n over R, and let A € G Ly(Zys) satisfies AAT = Xy, where
\ is a unit in Zss, AT is the transposition of A and I, is the identity matriz of order 2

over Zas. Then o(C) is a self-dual code of length 2n over Zss.
Proof: Let ¢, = (cio,¢11,---,¢1n) € C and ca = (cag, Cot, ..., Con) € CL, where, for
1 = 1,2 and j = 0,1,2,...,n — 1, Cij = Uiy + (1 — u)bij,aij,bij € Zss. Now, from

c1.co = 0, we have

n—1 n—1 n—1
E C15C25 = U E 15025 + (1 - U) E blijj =0.
J=0 Jj=0 J=0

Then

1
gD(Cl).QO(CQ) = (ClgA, 611147 Ce ,ClnA).(CQ()A, CglA, e ,CQnA) = Z(Cle) (CQjA)T = 0
=0
So o(C+) C o(C)t. Since | p(C)] = |o(Ch)|, then o(C+) = ¢(C)*t. Note that,
C' =C* and |C||CH| = | R|" shows that dim C = %. On the other hand
[0(C) | =1C|=|R|? = (25°)% = 25"
So, dim p(C) = logys 25" = n. Also,since dim ¢(C)+dim p(C)*+ = 2n, then dim o(C)*+ =
n. Thereby o(C) is a self-dual code. O
For a linear code C' of length n over the ring R = Zo5 + uZss, let
01 = {CLE Z25n|5|b€ Zg5n . au+b(1—u) GC}
and
Cy = {bG Zg5"|5|a € Zg5n : au+b(1 —U) € C}

Clearly, C; and Cy are linear code of length n over Zy5. Also, the linear code C' can be

uniquely expressed as C' = uC; @ (1 — u)Cs.
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Lemma 2.3. Let C be a linear code with lenght n over R = Zos + uZss, then C+ =
uCt @ (1 —u)Cs-. Also, C is a self-dual code if and only if both Cy and Cy are self-dual

code over Zgs.

Proof: Similar to Proposition 3 in [9]. O

Definition 2.4. Let C be a code of length n over R and P(C') be its polynomial repre-
sentation, i.e.P(C) = {X'" ez’ | (co,c1,¢2,..., ¢ 1) € C}. A linear code C of length n
R[z]

over R is a cyclic code if and only if P(C) is an ideal of the ring R,, = 7oy The ideal

P(C) is called the ideal corresponding to code C.

Note that, a linear code C' = uCy @ (1 — u)Cy is a cyclic code over R = Zo5 + ulsos if
and only if C7 and Cy are both cyclic code over Zss.

Theorem 2.5. (Theorem 3.4 in [11]) Suppose p is a prime not dividing n and C' is a cyclic
Zym-code. Then there exist a collection of pairwise-coprime polynomials Fy, Iy, ..., Fy,
such that FoFy ... F,, = 2" — 1 and C = <ﬁ1,pﬁ2, . ,pm_lﬁm), where F; = 9”7;;1, for
i=1,2... .m0

An element e(z) € R, satisfying e?(x) = e(z) is called an idempotent. Equivalently, as
polynomials e?(x) = e(x)(mod (z™ —1)). Each cyclic code over R contains a unique idem-
potent, which generates the ideal. This idempotent is called the generating idempotent

of the cyclic code.

Theorem 2.6. (i) Let C' be a cyclic code of length n over a finite ring R generated

R[z]
@0

by the idempotent e(x) in quetiont ring then C* is generated by the idempotent
1—e(z™).

(13) Let Cy and Cy be cyclic codes of length n over a finite ring R generated by the
idempotents e1(x), es(x) in %, respectively. Then Cy N Cy and C1 + Cy are generated

by the idempotents ey (x)es(x) and ey (x) + e2(z) — e1(x)ea(x), respectively.

Proof: Similar to Theorem 7 in [12].00

Let C' be a cyclic code over Zs5, then by Theorem 2.5, there exist unige monic polynomi-
als f(x), g(x), h(z) € Zs[a), such that 2"—1 = f(z)h(z)g(x) and C = (f(2)g(x), 5f(x)h(x)).

Lemma 2.7. Let C' = uC1®(1—u)Cy be a cyclic code of length n over R = Zys+uZss, then
C = (ufi(@)gi(z) + (1 —u) f2(x)g2(x), Sufi(x)hi(x) +5(1—u)f2(x)ha(x)), where 2 —1 =
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fi@)hi(@)gi(z) = fo(z)ha(x)ga(2), and for i = 1,2, C; = (fi(x)gi(x), 5fi(x)hi(x)) is a
cyclic code over Zss.

Proof: Let C = (ufi(x)gi1(z) + (1 — u) fa(z)go(x), bufi(z)h(z) + 5(1 — u) fo(x) ha(z)).

Also, let Cy = (f1(2)g1(x), 51 ()b (2)),and Cy = (fa(x)g2(x), 5 fa(x)ha()).

Clearly C C C, and hence uCy = uC, (1 —u)Cy = (1 — u)C. This implies that uC; @
(1—-u)Cy CC. Thus C = C.[

Corollary 2.8. Let R = Zss + uZss, then #}_{] 15 a principal ideal ring.

)
Proof: By notations Lemma 2.7, Let w(zx) = f(x)g(x)+5f(z)h(z). Similar to Theorem

3.6 in [7], we can prove that C' = (w(x)).0

Note that, the number of distinct cyclice codes of length n over R = Zy; + uZss is
25", where r is number of the basic irreducible factors of ™ — 1 over Z;. Now, Let
f(x) € Zyslx], be a polynomial of degree k, then f*(z) = 2*f(z~') will be denote its
reciprocal polynomial. Note that, (f(z)g(z))* = f*(x)g*(x) for f(x), g(x) € Zss|z]. In
fact, (f(z)g(x))* = f*(z)g*(z) for f(x), g(x) € éfﬂxl]), provided deg(f(x)g(z)) < n.

Lemma 2.9. Let C = (f(x)g(z),5f(x)h(x)) be a cyclic code with odd length n over Zas,
where f(z), g(x) and h(z) are monic polynomials such that f(x)h(z)g(x) = 2™ — 1. Then
C' is self-dual code if and only if f(x) = h*(x) and g(x) = g*(z).

Proof: The proof is similar to proof of Theorem 12.3 .20 in [10] for cyclic codes over
Z,.1

Lemma 2.10. Let C' = (ufi(z)g1(z)+(1—u) fa(x)ga(x), Sufi(x)hy (2)+5(1—u) fo(x)he(x))
be a cyclic code over R = Zas + uZss, where 2" — 1 = fi(z)hi(x)g1(x) = fo(x)he(x)g2(x)
and fori = 1,2, C; = (fi(x)gi(x),5fi(x)h;(x)) is a cyclic code over Zys. Then C' is self-
dual if and only if fo(z) = hi(x), 1(z) = gi(z) and fi(z) = hi(z), g2(x) = g3(x).

Proof: Since C*+ = uCi @ (1 —u)Co™, then C* is cyclic code if and only if C is a cyclic
code. Also by Lemma 2.4, code C' is self-dual over R = Zss + uZss if and only codes Cy
and Cy are both self-dual over Zss. Now, by Lemma 2.11, the proof is compelete.[]

Since Zos is a chain ring with unique maximal ideal (5), by Theorem 4.4 in [3], we have

the following lemma.
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Lemma 2.11. Non-trivial cyclic self-dual codes of length n over Zss exist if and only if

5" % —1(modn) for all positive integer i.

Lemma 2.12. Let C be a cyclic code of length n, over the ring R = Zss + uZss, and
ged(n,25) = 1, then there ezists a unique idempotent element e(x) = uey(x) + (1 —
u)es(x) € R[x] such that C' = (e(x)).

Proof: Since ged(n,25) = 1, by Theorem 5.1 in [11], there exist unique idempotent
elements e1(x), es(x) € Zos[x], such that Cy = (e1(x)), Cy = (es(x)). Then C = (uey(z) +
(1 — u)ea(x)), let e(z) = uey(z) + (1 — u)ea(x). Then e*(x) = uei(x) + (1 — u)ei(z) =
uer () + (1 —u)ea(z) = e(x). So e(x) is an idempotent of code C. If there exists another
d(z) € C, such that C = (d(z)), then d(z) € C = (e(x)), thereby d(z) = a(x)e(x).
Then d(x)e(z) = a(z)e?(x) = a(x)e(z) and hence d(x) = e(x), which implies that e(z) is

unique.]

Lemma 2.13. Let C = uCy @ (1 —u)Cy be a cyclic code of length n over R = Zas + uZas.
Let e(z) = uey () ® (1 — u)es(x), where for i = 1,2, e;(x) is generating idempotent of C;
over Zas. Then 1 — e(x~Y) is the generating idempotent for dual code C*.

Proof: Remember that C+ = uC1* @ (1 — u)Co™ and C* is a cyclic code if and only if
Ci, C3 are both cyclic codes. By Theorem 2.7, we have Ci- = (1 — e;(z71)), fori=1,2.
By Lemma 2.14, we have u(1 — e;(z7') + (1 —u)(1 — ea(x™1) = 1 — e(a™!) is generating
idempotent for code C+.[J

3. QUADRATIC RESIDUE CODES OVER R = Zo5 + uZss.

Quadratic residue codes are duadic codes over Z, of odd prime length n = p, where ¢
is a power of a prime number and ¢ must be a square modulo n. We will let n = p be an
odd prime not dividing ¢, we will assume that ¢ is a prime power that is a square modulo
p. Let @, denote the set of nonzero squares modulo p and let IV, be the set of nonsquares
modulo p. Let Q(z) = Yicq, 2", N(2) = Sien, o’ and h(z) =1+ Q(z) + N(x).

Theorem 3.1. The Legendre symbol (g) = 1 if and only if p = £1(mod20) and p =
+9 (mod 20).
Proof: See Theorem 1.1 in [1].00

By Theorem 3.1 for considering quadratic residue code over Zs(and hence over Zss),

we must assume that p = +1(mod20) and p = £9(mod20). By the introducing of
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quadratic residue codes over Zos in [1], we now discuss the quadratic residue codes over
R = Zos+uZys. We assume ei(x) and ex(x) be generating idempotent of quadratic residue
codes Cy, Cy, respectively. Then e(x) = uei(z) + (1 — u)es(x) is a generating idempotent

for code C'=uCi ® (1 — u)Cs.
By Theorem 2.7 in [1] and Lemma 2.14, we have the following definition.

Definition 3.2. Suppose that p = 20k + 1, then
(i) Ifk = 5t,let Dy = (u(1+ N(x)) + (1 —u)(1 + Q(x))),
Dy = (u(1+Q(x)) + (1 —u)(1 + N(x))),
Ey = (24uQ(z) + (1 — u)(24N(x))),
Ey = (24uN(z) + (1 — u)(24Q(x))).
If k =5t41,let D; = (u(20Q(x) + 11N (z) +16) + (1 — u)(11Q(z) + 20N (z) + 16)),
Dy = (u(11Q(z) + 20N (z) + 16) + (1 — u)(20Q(z) + 11N (z) + 16)),
(w(14Q(z) + 5N (x) + 10) + (1 — u)(5Q(z) + 14N (z) + 10)),
Ey = (u(5Q(z) + 14N (z) + 10) + (1 — w)(14Q(x) + 5N (x) + 10)),
)If k=5t +2,1et D; = (u(15Q(x) + 21N (x) +6) + (1 — u)(21Q(z) + 15N (z) + 6)),
Dy = (u(21Q(z) + 15N (z) 4 6) + (1 — u)(15Q(z) + 21N (z) + 6)),
Ey = (u(4Q(z) + 10N (z) + 20) 4+ (1 — w)(10Q(z) + 4N (z) + 20))
Ey = (u(10Q(z) + 4N (z) + 20) + (1 — u)(4Q(x) + 10N (z) + 20)).
( v)If k=5t +3,1let D1 = (w(6Q(z) + 10N (x) +21) + (1 — w)(10Q(z) + 6N (x) + 21))),
) ) +21)
(
)

= (u(10Q(z) + 6N (z) + 21) + (1 — u)(6Q(z) + 10N (z

)

21

)
)
( )+ ),
=< (19Q(x) + 15N (z) +5) + (1 — u)(15Q(z) + 19N (z) + 5)),
u(15Q(x) + 19N (z) + 5) + (1 — u)(19Q(x) + 15N () + 5)).
( VIf k=5t +4,let D = (u(5Q(z) + 16N (z) + 11) + (1 — u)(16Q(z) + 5N (z) + 11)),
= (u(16Q(z) + 5N (z) + 11) + (1 — w)(5Q(x) + 16N (z) + 11
(u(9Q(x) + 20N (z) + 15) + (1 — u)(20Q(x) + IN(z) + 15)
(20 )+ (1 - )+ 15)

(u u)(9Q(x) + 20N (z

)

)
>7
)-

+
_'_
Q(z) +9N(z) + 15) +
These twenty cyclic codes are called the quadratic residue codes over Zs5 + uZs5. Now,

Let a be an integer such that ged(a,n) = 1, the function p, defined on {0,1,...,n — 1}

by 1.(i) = ia(modn) is a permutation of the coordinate positions {0,1,...,n — 1} of
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a cyclic code of length n and is called a multiplier. This map acts on any polynomials

f(z) = Xca" € Rlx] as p,(Xeirt) = Sega™.

Theorem 3.3. Let p = 20k + 1, then the following conditions on quadratic residue codes
does hold.

(1) If a € Qp, then po(D;) = D; and p.(E;) = E;. If a € N, then u.(D;) = D; and

1a(E) = Ej, fori,j € {1,2} and i # j.

(17) D1NDy = (l(x)) and D1+Dy = R, where l(x) is a suitable element of {h(x),6h(x), 11h(x)
, 16h(x), 21h(z)}.

(iii) By N By = {0} and Ey + By = (I(z)1).

(iv) Fori=1,2, we have D; = E; + (l(x)).

(v) Fori=1,2, we have | D; | = 25" and | E; | = 25P71.

(vi) B = Dy and Ey = D;.

Proof: (i) Let p = 20k + 1, we prove only the case k = bt, other cases are proved
similarly. In this case l(x) = h(x). If a € N, then p,(u(24Q(z)) + (1 — u)(24N(2))) =
w(24N (x)) + (1 — u)(24Q(z)). This shows that p,(E1) = Ey. Similarly, we can show that
pa(E2) = Ey and p(D;) = Dy, fori,j € {1,2} and i # j.

(¢1) By Theorem 2.7, D1 N Dy = ((u(1+Q(x)) + (1 —u)(1+ N(x)))(w(l+ N(z)) + (1 -
u)(1+Q(x))))-

Since u(1+N(z))+(1—u)(1+Q(x)) +u(l1+Q(x))+ (1 —u)(1+N(x)) = 1+ h(z), then

(u(1+ N(z)) + (1 —u)(1+ Qx))h(x) = (u(l + N(z)) + (1 —u)(1 + Q(x)))(24 +
L+ h(z)) = 24(u(l + N(x))) + (1 = u)(L + Q(x)) + u(l + N())” + u(l + N(x))(1 +
Q) + (1= u)(1+Q(2))* + (1 — u)(1+ N(x))(1 + Q(x)) = (u(l + N(z)) + (1 - u)(L +
Q) (u(l + Q(x)) + (1 — u)(1 + N(x))).

Since p = 20(5t) + 1 = 1 (mod 25), then L* =

(u(1+N(2)) + (1 —u)(1+Q(2)))(u(1+Q(z)
uN(z) + Dh(z) = u(P5)h(z) + (P57 )h(z) —u
Dy N Dy = (h(x)). Again, by Theorem 2.7,

uw(l+N(z))+(1—u)(1+Q(x)) +u(l+Q(z))+ (1 —u)(1+ N(x)) — (u(1+ N(z))+ (1 —
w) (14 Q(x)))(u(l+ Q(x)) + (1 —u)(1 + N(z))) is a generating idempotent for Dy + Ds.
This shows that Dy + Dy = R,

0 (mod 25), thereby

0(
+ (1 —u)(1+N(x))) = (uQ(z)+ N(z) -
EUh(z) 4+ h(z) = h(z). This shows that

e \ ~—
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(7i1) By Theorem 2.7, ExNEy = ((24uQ(x)+24(1—u)N (2))(24uN (z)+(1—u)(24Q(x))). As
24uQ(x) + 24(1 — u)N(z) + 24uN(x) + 24(1 — w)Q(z) = 1 — h(x). Also

(24u@Q(x) + 24(1 — w)N(2))(=h(z)) = (24uQ(x) + 24(1 — u)N(2))(24 + 1 — h(z) =
(24uQ(z) + 24(1 — u)N(z)) + (24uQ(x) + 24(1 — u)N(x))(24uQ(z) + 24(1 — u)N(z) +
24uN (z) +24(1 —u)Q(z)) = (24uQ(x) + 24(1 — u)N(x))(24uN (z) + (1 — u)(24Q(z)).

Since 1 = 0(mod25), then (24uQ(x) + 24(1 — u)N(z)(—h(z)) = u(Z1)h(z) +
(8 (W) — u(Z2)(h(z)) = 0. This shows that By N Ey = {0}. Again, by Theorem

2 2
2.7, we know that

24u@Q(z)+24(1—u) N (z)+24uN (2)+24(1—u)Q(x) — (24uQ(x)+24(1—u) N (x) ) (24uN (z)+
(1 —u)(24Q(x)), is a generating idempotent for code Ey+ Es. This shows that Ey + Ey =
(1= h(2)) = (h(z))"

(tv) Theorem 2.7 shows that, Ey + (l(x)) has idempotent generator
24uQ(x) + 24(1 — uw)N(x) + h(z) — (24uQ(z) + 24(1 — u)N(z))h(z).

Note that, (24uQ(z) + 24(1 — u)N(z))(—h(z)) = 0. Then 24u@Q(x) + 24(1 — u)N(x) +
h(z) = u(l+ N(x)) + (1 —u)(1 4+ Q(z)). Therefore By + (l(x)) = Dy. Similarly, we can
show that Ey + (I(z)) = Ds.

(v) Since D1 + Dy = R, and Dy, Dy are equivalent, then we must have
25% = | Dy + Dy| = %. Since | Dy N Dy| = 25%, then | Dy| = | Dy| = 25PT1,
Also,D1 = Ey + (l(x)) and (24uQ(x) 4+ (1 —u)(24N (z)))h(x) = 0, this shows that | By | =
25P~1,

Similarly, we can show that | Ey | = 25971,

(vi) As —1 € @, by Theorem 2.7, the generating idempotent of Etis

1 1 (24uQ(2) + (1 — ) (24N () = u(l + Q(2)) + (1 — w)(1 + N(x)) = Dy.
Then Ey*~ = Ds. Simalarly, we can show that Eyt = D,.00
By Theorem 2.8 in [1] and Lemma 2.14, we have the following definition.

Definition 3.4. Suppose that p = 20k — 1, then
(1) If k=5t let Dy = (24uN(z) + (1 — u)(24Q(x))),
Dy = (24uQ(z) + (1 — u)(24N(z))),
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Ey = (u(1+Q(z)) + (1 —u)(1+ N(z))),
Ey = (u(1 + N(2)) + (1 = uw)(1 + Q(x)))-
( i) Ik = 5t + 1, let Dy = (u(9Q(x) + 20N (z) + 15) + (1 — u)(20Q(x) + IN (z) + 15)),
— (u(20Q(x) + IN(x) + 15) + (1 — u)(9Q(x) + 20N (x) + 15)),
— (u(5Q(x) + 16N (x) + 11) + (1 — u)(16Q(z) + BN (z) + 11)),
:(u(l Q(x) +5N(z) +11)+ (1 — u)( ()+16N(x)+11))
(m) If k =5t+2, let D; = (w(19Q(z) + 15N (x) 4+ 5) + (1 — uw)(15Q(z) + 19N (z) +5)),
= (u(15Q(x) + 19N (z) +5) + (1—U)( ()+15N($)+5)>7
:(u(l()Q( )+ 6N (x) +21) + (1 — u)(6Q(x) + 10N (x) + 21)),
= (u(6Q(x) + 10N (x) + 21) + (1 — u)(10Q(x) + 6N (x) 4 21)).

( ) Itk = 5t +3, let Dy = (w(4Q(z) + 10N (z) +20) + (1 — u)(10Q(z) + 4N (z) + 20))),
10Q(x) + AN (x) + 20) + (1 — u)(4Q(x) + 10N (z) + 20)),

Dy = {u( )
E; = (u(15Q(z) + 21N (x) +6) + (1 — u)(21Q(z) + 15N (x) + 6)),
Ey = (u(21Q(z) + 15N (z) +6) + (1 — w)(15Q(z) + 21N (x) + 6)).
(0) If k= 5t + 4, let Dy = (u(14Q(z) + 5N (z) + 10) + (1 — u)(5Q(z) + 14N (z) + 10)),
Dy = (u(5Q(x) + 14N (x) + 10) 4+ (1 — u)(14Q(x) + 5N (x) + 10)),
By = (u(20Q(x) + 11N (x) + 16) + (1 — u)(11Q(x) + 20N (x) + 16)),
Ey = (u(11Q(z) + 20N (z) + 16) + (1 — u)(20Q(z) + 11N (x) + 16)).

This cyclic codes of length p are called the quadratic residue codes over R = Zos + Zas.

Similar to Theorem 3.3, we have the same result.

Theorem 3.5. Let p = 20k — 1, then the following conditions on quadratic residue codes
does hold.

(2) If a € Qp, then po(D;) = D; and po(E;) = E;. If a € Ny, then pu,(D;) = D; and
1a(E)) = Ej, fori,j € {1,2} and i #

(13) D1NDy = (I(x)) and D1+Dy = R, where [(x) is suitable element of {—h(x),4h(z), 9h(x),
14h(x),19h(x)}.

(iii) By N By = {0} and E; + Ey = (I(x)h).

(tv) Fori=1,2, we have D; = E; + (l(x)).

(v) Fori=1,2, we have | D; | = 25P*™ and | E; | = 25P~1.

(vi) By, Ey are self-orthogonal code and for i € {1,2} we have, Ei- = D;.
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Proof: We only need to prove part (iv), the proof of other parts are similar to Theorem

3.3, so we omit it. Let k = 5t, note that —1 € N, and E; has the idempotent generator
1= j w1+ Q@) + (1 —w)(1 + N(@)) = u(=N(@)) + (1 — u)(~Q(x)).
Then Eit = Ds. Similarly, we can show that FEyt = D,.0
The proof of the following theorem is similar to Theorem 3.3 and 3.5, so we omit it.

Theorem 3.6. Let p = 20k £ 9, then the following conditions on quadratic residue codes
does hold.

(1) If a € Qp, then p,(D;) = D; and p.(E;) = E;. If a € N, then p.(D;) = D; and
ta(E;) = Ej, fori,j € {1,2} and i # j.

(17) DyN Dy = (l(z)) and D1+ Dy = R, where l(x) is suitable element of {14h(z), 19h(z),
—h(z),4h(x),9h(x)}, if p = 20k +9 and l(z) is suitable element of {16h(x),21h(x), h(x),
6h(z), 11h(z)}, if p = 20k + 11.

(iii) By N By = {0} and E; + Ey = (I(x)*).

(tv) Fori=1,2, we have D; = E; + (I(x)).

(v) Fori=1,2, we have | D; | = 25!™" and | E; | = 25°~1.

(vi) If p = 20k + 9, then Ei- = Dy and Ey = Dy. If p = 20k + 11, then two codes Ey, E,
are self-orthogonal and for i € {1,2} we have E}* = D;.

Definition 3.7. The extended code of a quadratic residue code C' over Zy5 denoted
by C, which is the code obtained by adding a specific column to the generator ma-
trix of C. In other words extension C' of C is defined by C = {¢|c € C}, where
C = (Coos CorCly -y Cp1)s Coo + Co+ 1+ -+ + 1 = 0(mod 25).

Let p = 20k 4+ 1 we define Dl to be the Zs5-code generated by the matrix

0 01 2 -« p—1
0
0 el
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where each row of GGy is a cyclic shift of the —Q(x) when k = 5¢, is a cyclic shift of the
14Q(x) + 5N (x) + 10 when k = 5t + 1, is a cyclic shift of the 4Q(z) + 10N (z) + 20 when
k = 5t 4 2, is a cyclic shift of the 19Q(x) + 15N (z) + 5 when k = 5t + 3, is a cyclic shift
of the 9Q(z) + 20N (z) + 15 when k = 5t + 4. Similarly we define D,.

Theorem 3.8. (i) Let p = 20k — 1 and Dy, Dy are quadratic residue codes over R also
Dy, Dy denote their extended codes, then Dy, Dy are self-dual codes.
(13) Let p =20k + 1, and Dy, Dy are quadratic residue codes over R, then ElL = Dy and
Dy = Dy.

Proof: (i) We only prove the case k = 5t + 1, other cases are proved similarly. By
Theorem 3.5, we have D1 = Ey + (4h). Also, Dy has the following generator matrix:

0 01 2 - p—1
0

0 Gy

24 4 4 4 - 4

where each row of Gy is a cyclic shift of the 5Q(z) + 16N (x) 4+ 11. Since Gy is a gen-
erator matriz for code Ey and Ey is self-orthogonal (Theorem 3.5 (vi)), the rows of G
are orthogonal to each other and also orthogonal to 4h (Theorem 3.5(iii)). We know that
the vector (24,4h) is orthogonal to itself. This shows that D is self-orthogonal. Since
|Dit| = |R|PTY — |Dy| = | D1, then D, is a self-dual code. Similarly, we can show that Dy
s a self-dual code.

(11) We prove only the case k = 5t + 2 the other cases are proved similarly. Note that,
in this case Dy = Ey + (11h), by Theorem 3.3 (iv). Then Dy has the following generator
matrix:

o 0 1 2 - p-1
0

0 G,

24 11 11 11 -+ 11
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where each row of Gy is a cyclic shift of the 4Q(x)+10N (2)+20. By Theorem 3.3 (vi), By*™ =
Dy and Gy generate Ey. Since the product of the vectors (24,11,...,11) and (1,1,...,1)
is 24+ 11p = 0(mod25), then any row in the above matriz is orthogonal to any row in
the matriz which defines Ds. Then Dy C DlL. Since |D2| = ]Dlﬂ = 25P* we must have
DlL = Dg. Similarly, we can show that Dgl = f)l.D

The proof of the two following theorems is similar to Theorem 3.8, so we omit it.

Theorem 3.9. (i) Let p = 20k + 11 and Dy, Dy are quadratic residue codes over R and
D1, Dy denote their extended codes. Then D-, Dy are self-dual codes.

(13) If p = 20k + 9 and Dy, Dy are quadratic residue codes over R, then DlL = Dy and
DQL = Dl.

4. NUMERICAL EXAMPLES

In this section, some examples are given to illustrate the main work in this manuscript.

2 2
Let M = ) 9 be a matrix of GLy(Zy5). Clearly MM"' = 81I,. Suppose that C

is a self-dual code of length n over the ring R = Zy5 + uZs; and ¢ be the Gray map
corresponding to matrix M. Theorem 2.2, shows that ¢(C) is a self-dual code of length

2n over ring Zos.

Example 1. Since 5 # —1(mod11), for any positive integer j. Then Lemma 2.11,
shows that there exists a self-dual code of length 11 over ring R. Note that ! — 1 =
(2+24) (25 + 172"+ 242 + 224+ 1624 24) (2° 4+ 924 4 242 + 22 4+ 81+ 24) over Zys|x]. Now, let
g(z) =1—x and f(x) = 2°+ 172" 42423 + 2% + 162+ 24, then [*(z) = —(2°+ 92" + 2423 +
12+ 8x +24). Therefore z'' — 1 = g(z) f(z) f*(x). Let C; = Cy = (f*(x)g(z),5f(z) f*(x)).
By Lemma 2.10, code C' = (f*(x)g(z),5f(z)f*(x)) is a cyclic self-dual code over the ring
R = Zy5 4+ uZss. Theorem 2.2, shows that ¢(C') is a cyclic self-dual code of length 22 over
Za5. The image of code C' under Gray map ¢ is a code of dimension 11 with minimum

Hamming weight 6.

Example 2. Let p = 11. We considere the quadratic residue codes of length 11 over
R = Zo5 + uZss. Let Q11 denote the set of quadratic residue modulo 11 and Ny the set
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of non residue modulo 11. So, Q11 = {1, 3,4,5,9} and Ny; = {2,6,7,8,10}. Let

Q(z) = Z z', N(z) = Z .

1€Q11 JEN11

Since 11 = 20k + 11, by Theorem 2.10 in [1], we have
Dy = (u(22Q(z) + 19N (z) + 21) + (1 — u)(19Q(z) + 22N (z) + 21)),
Dy = (u(19Q(x) + 22N (z) + 21) + (1 — u)(22Q(z) + 19N (z) + 21)),
By = (u(6Q(x) +3N(z) +5) + (1 —u)(3Q(x) + 6N () + 5)),
Ey = (u(3Q(z) + 6N () +5) + (1 — u)(6Q(x) + 3N (z) + 5)),

are quadratic residue codes of length 11 over the ring R = Zs5 + uZs5. Two codes E; and

E5 have the following Zss-generator matrices respectively.

UAI 1 UA2 1
Gl = ’ and GQ = ’ y
(]_ — U)ALQ (1 — U)A272

where Ay = Ass = [I5 | Bl and A15 = Ay = [I1o | B’T]. Also, B and B’ are the

following matrices.

1 16 7 24 15 8
17 23 10 17 7 1
B=|20 116 8 1 20|, B=(363336663G¢).
1 15 8 18 23 9
6 7 2 15 8 1

Now, let D; and D, be the extension codes of Dy and Ds, respectively. By Theorem

3.9, two codes D; and D, have the following generator matrices, respectively.

o 0 1 2 - p—1 © 0 1 2 - p—1
0 0

_ 0 G, _ 0 G
24 16 16 16 --- 16 24 16 16 16 --- 16

Theorem 3.9, shows that two codes D; and D, are self-dual code of length 12 over the
ring R = Zys + uZss. Note that, | D; |=| D; |= 252, for i = 1,2. By Theorem 2.2, (D)
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and ¢(D,) are self-dual code of length 24 over Z,5, dimension 12 and minimum Hamming

weight 8.

1]
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