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Abstract. In this article, we introduce and examine the concept of G-type rings. A

ring R is classified as a G-type ring if its total quotient ring, denoted by Q, is generated

by a countable number of elements over R as an R-algebra. Formally, Q = R[S−1], where

S is a countable set of regular elements in R. We establish that R is G-type if and only

if there exists a countable set of regular elements, denoted as S, such that every prime

ideal disjoint from S consists solely of zero-divisors. It is shown that whenever a ring T

is countably generated over a subring R, as an R-algebra, and T is strongly algebraic

over R, then R is G-type if and only if T is G-type.

1. Introduction

The concepts of ring extensions, in particular quotient fields and total quotient rings,

play an important role in the context of commutative algebra. Thus, the classification

of their structure is one of the most interesting subjects for researchers in this area. For

instance, Goldman in [5] and Krull in [8] introduced independently and almost at the

same time the concept of G-domains, which characterize the domains whose quotient

fields are generated by one element over these domains (for some more results concerning

this objects, see [6], [4], [10], [3]and [9]). E. Artin and J. T. Tate in [1], have written a

valuable note on finite ring extensions. J. Conway Adams in [2] has given the structure of
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G-rings, i.e., the rings R whose total quotient rings are generated by one regular element

over R. O. A. S. Karamzadeh and B. Moslemi in [7] have fully characterized G-type

domains, i.e., the domains whose quotient fields are countably generated as an R-algebra.

They have also established a nice relationship between G-type domains and countable

prime avoidance property (CPA property), see [11, Lemma 1.1 and Theorem 2.1] and [7,

Definition 3.5, Theorem 3.8, Corollary 3.9 and Theorem 3.10]. Karamzadeh and Moslemi

have also used the concept of G-type domains to give a natural proof of the well-known

Hilbert Nullstellensatz theorem in countably infinite-dimensional space, see [7, Theorem

2.12, Corollary 2.13 and Corollary 2.14]. In this article we will introduce a new class

of rings, G-type rings say, i.e., the rings R whose total quotient rings are generated by

a countable number of regular elements over R. An outline of this paper is as follows:

Section 2 deals with some preliminary facts about multiplicatively closed sets (mc-set, for

brevity) and some needed facts about the total quotient rings. Section 3, investigates the

basic properties of G-type rings. Throughout this discussion all rings are commutative

with unity. If S is an mc-set in R, then 0 /∈ S, 1 ∈ S and R[S−1] denotes the ring of

fractions of R with respect to S. In particular, if s ∈ R is a non-nilpotent element and

S = {1, s, s2, . . . , sn, . . .}, then we put R[S−1] = Rs. Based on the above argument we

observe that if R is a ring and A is a subset of R consisting of some elements of R whose

finite products are nonzero, then the set of all finite products of elements of A (the empty

product is taken to be the identity) is an mc-set, which is clearly the smallest mc-set

containing A (it is also called the mc-set generated by A). If R and T are rings with

R ⊆ T , the element t ∈ T is called an integral element over R precisely when f(t) = 0 for

some monic polynomial f(x) ∈ R[x]. The set of all integral elements of T over R forms

a subring of T that contains R, it is called the integral closure of R. We say that R is

integrally closed in T if R is its own integral closure in T . The set of all zero-divisors of

R is denoted by Z(R) and S = R \ Z(R) is an mc-set, which is called the set of regular

elements of R. An ideal I of R that contains at least one element of S = R \ Z(R) is

called a regular ideal. Considering R as a subring of R[S−1], we say that R is integrally

closed, if it is integrally closed in R[S−1].

2. Rings with countably generated total quotient ring

We begin with the following preliminary facts.
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Lemma 2.1. Let R be a factorial domain and S be an mc-set in R containing a set

A of prime elements of R. Then there is an mc-set T with T ⊂ S, T ∩ A = ∅ and

R[S−1] = R[T−1].

Proof. Let C be the mc-set which is generated by A and B = {a2 : a ∈ A}, put L =

B ∪ (S \C). Now, let T be the smallest mc-set containing L, then T ⊂ S, T ∩A = ∅ and

R[S−1] = R[T−1]. We may also simply take T to be S \ A and in fact this is the largest

mc-set with the previous properties. �

Remark 2.2. For a general ring R, let S be an mc-set consisting of regular elements

in R, then we may discard any finite set of such elements from S in the following sense.

Let {a1, a2, . . . , an} ⊂ S, put L = S \ {a1, a2, . . . , an} and T = {ar1ar2 . . . arnx : r =

2, 4, 6, . . . , and x is a finite product of elements of L} ∪ {1}, then ai /∈ T, i = 1, 2, . . . , n,

but R[T−1] = R[S−1]. Therefore, there is always an mc-set T ⊂ S excluding a1, a2, . . . , an

with the property that R[T−1] = R[S−1]. The natural question concerning a discarded

set is: how large can it be? To settle the question we give the next definition.

Definition 2.3. Let R be a ring, S be an mc-set consisting of regular elements in R and

s, t ∈ S. We say that s is equivalent with t and we write s ∼ t if and only if Rt = Rs.

Lemma 2.4. Let R be a ring, S be an mc-set consisting of regular elements in R and

s, t ∈ S, then s ∼ t if and only if there exist integers m and n such that sn ∈ (t) and tm ∈
(s).

Proof. Let s ∼ t, i.e., Rt = Rs and 1/t ∈ Rt = Rs, then 1/t = r/sn for some integer n, so

that sn = rt ∈ (t). Conversely, let tm ∈ (s) and sn ∈ (t), for some integers m and n, then

tm = as and sn = bt. Now, if r/tk ∈ Rt, then r/tk = rbk/tkbk = l/snk ∈ Rs. �

Corollary 2.5. If R is a factorial domain, then s ∼ t if and only if s and t have the

same primes in their factorizations.

Remark 2.6. As we have observed, ∼ defines an equivalence relation in S so that,

S =
⋃

i∈I [si], where {[si] : i ∈ I} is the set of all equivalence classes and each equivalence

class [si] = Si is an mc-set with R[Si
−1] = Rsi . Now, by the Axiom of Choice there exists

a set F such that F ∩ [si] is a singleton set for all i ∈ I. Accordingly, R[T−1] = R[S−1],

where T is the mc-set generated by F . It is clear that if |I| is infinite, then |T | = |I|.
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Definition 2.7. Let R be a ring, S be the set of all regular elements in R, Q = R[S−1] be

the total quotient ring of R and let F be as in Remark 2.6, then the caliber of R, denoted

by C(R), is the least cardinal λ such that there exists a subset E ⊆ F with |E| = λ and

R[T−1] = Q, where T is the mc-set generated by E, see also [7, Definition 1.1].

Proposition 2.8. Let R be a ring and let Q, S and F be as in Definition 2.7, then C(R)

is a unique cardinal number, which is independent of the chosen set F .

Proof. Let F1 and F2 be two such sets and E1 ⊆ F1, E2 ⊆ F2 be two subsets of the

least cardinalities such that R[S−11 ] = R[S−12 ] = Q, where S1 and S2 are the two mc-sets

generated by E1 and E2 respectively. Now, let ∼ be the equivalence relation in Definition

2.3, and let S =
⋃

i∈I [si]. Put F1 ∩ [si] = {ai};F2 ∩ [si] = {bi}; E1 = {ai : i ∈ J ⊆ I};
E2 = {bi : i ∈ J ′ ⊆ I} and E3 = {bi : {bi} = F2 ∩ [si], i ∈ J}. Clearly, Rsi = Rai = Rbi .

Let S3 be the mc-set generated by E3 that is to say, R[S−13 ] = Q. This shows that

|E1| = |E3| ≥ |E2|, similarly we have |E1| ≤ |E2|. Therefore, |E1| = |E2| and we are

through. �

3. G-TYPE RINGS

Definition 3.1. A ring R is said to be a G-type ring if C(R) ≤ ℵ0. Equivalently, R is a

G-type ring if there exists a countable mc-set S consisting of regular elements in R with

R[S−1] = Q, where Q is the total quotient ring of R.

Remark 3.2. If C(R) < ℵ0, then C(R) = 1 and R is a G-ring, see [2, G-property].

For example, if R is a G-domain (resp., G-type domain) then its caliber is 1 (resp.,

C(R) ≤ ℵ0), see also [7, Definition 1.2].

Before giving some examples, it goes without saying that one can recast the definition of

G-type rings as follows. Let R be a ring and Q be its total quotient ring, then R is a G-type

ring if Q is generated by a countable number of regular elements over R. Therefore, Q is

a countably generated R-algebra and one can write: Q = R[a1/b1, a2/b2, . . . , an/bn, . . .] =

R[1/b1, 1/b2, . . . , 1/bn, . . .]. Clearly, G-type domains, countable rings and factorial do-

mains with only a countable number of prime elements (up to units) are G-type rings.

Hence, if R is a countable ring, then R[x] is also a G-type ring, but R[x] is not a G-ring,

see [2, Proposition 3.2]. If R1 ⊆ R2 ⊆ . . . ⊆ Rn ⊆ . . . is a chain of G-type rings such
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that the regular elements of Ri are regular in Ri+1 for all i, then so too is R =
⋃∞

n=1Rn

(note, the total quotient ring of Ri is contained in the total quotient ring of Ri+1). The

following remark is now immediate.

Remark 3.3. Although, R[x] is not a G-ring but R[x] is a G-type ring if and only if R

is countable. In generally, if X = {xi}i∈I is a set of indeterminate over R, then R[X] is a

G-type ring if and only if R∪X is a countable set, see also [7, Theorem 2.1 and Corollary

2.2].

We now present the following proposition, which extends [6, Theorem 19].

Proposition 3.4. Let R be a ring and Q be its total quotient ring and let S be an mc-set

in R consisting of regular elements. Then the following statements are equivalent.

(1) Each nonzero regular prime ideal intersects S.

(2) Each nonzero regular ideal intersects S.

(3) Q = R[S−1].

Proof. (1)→ (2). Let I be an ideal in R containing a regular element and I ∩S = ∅, then

there is a prime ideal P ⊇ I with P ∩ S = ∅, which is absurd.

(2)→ (3). Clearly, S ⊆ Q. Let a/b ∈ Q, then (b)∩S 6= ∅, i.e., there exist 0 6= r ∈ R with

b
′
= br ∈ S. Thus, a/b = ar/br = a

′
/b
′ ∈ R[S−1].

(3)→ (1). In fact we prove more, i.e., (3)→ (2). Let I 6= (0) be an ideal and a ∈ I be a

regular element, then 1/a = b/s, s ∈ S, i.e., s = ab ∈ I ∩ S. �

The following corollary is now immediate.

Corollary 3.5. A ring R is a G-type ring if and only if there exists a countable mc-set

S consisting of regular elements in R such that every prime ideal which is maximal with

respect to having the empty intersection with S consists of zero-divisors.

Proposition 3.6. Let R be a G-type ring with the total quotient ring Q and let T be a

ring with R ⊆ T ⊆ Q. Then T is a G-type ring. In particular, a ring R is a G-type

ring if and only if every proper localization of R (i.e., R ⊂ R[S−1], where S is an mc-set

consisting of regular elements in R) is a G-type ring.

The next definition is needed.
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Definition 3.7. Let R ⊆ T be a ring extension. Then T is said to be strongly algebraic

(resp., strongly integral) over R, if each regular element of R is regular in T and each

element t ∈ T is a root of a polynomial f(x) ∈ R[x], whose leading coefficient is regular

(resp., the unit) in R and moreover if t is regular in T , then the constant term of f(x) is

regular in R, too.

Clearly, if R ⊆ T are domains, then T is algebraic (resp., integral) over R if and only if

it is strongly algebraic (resp., strongly integral) over R. We require the following lemma.

Lemma 3.8. Let R ⊆ T be a ring extension such that T is strongly algebraic over R.

Then the total quotient ring of T , L say, is integral over the total quotient ring of R, Q

say. Moreover, for each regular element t ∈ T we have t−1 ∈ Q[t].

Proof. First, let t ∈ T be a regular element and let f(x) ∈ R[x], where f(x) = a0 + a1x+

· · ·+anx
n such that both a0 and an are regular and f(t) = 0 (note, T is strongly algebraic

over R). Consequently, t(a1 + a2t+ · · ·+ ant
n−1) = −a0. Now, a0 being regular in R has

an inverse in Q, hence we may multiply the latter equality by −a−10 to get t−1 ∈ Q[t].

Finally, let x = ut−1 ∈ L, where u, t ∈ T with t regular. Since T is strongly algebraic

over R, we infer that Q ⊆ L and clearly u and t−1 are integral over Q, hence x is integral

over Q too and we are done. �

We recall that, if R ⊆ T are domains such that T is integral over R, then it is well-

known and easy to prove that R is a field if and only if T is a field, see [6, Theorems 15,

16]. The following statement offers a generalization of this fact.

Corollary 3.9. Let R ⊆ T be a ring extension such that T is strongly algebraic over R.

Then if R is its own total quotient ring, so too is T . Moreover, if T is integral over R

and T is its own quotient ring, so too is R.

Proof. Let R be its own quotient ring and t ∈ T be a regular element. Now in view

of the previous lemma, we have t−1 ∈ R[t] ⊆ T , hence T is its own quotient ring too.

Conversely, let r ∈ R be regular. Since T is strongly algebraic over R, we infer that r is

regular in T too. Therefore r−1 ∈ T and since T is integral over R, we immediately infer

that r−1 ∈ R[r] ⊆ R, see also [6, Theorem 15], i.e., r−1 ∈ R and we are done. �
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The following fact is the counterpart of [6, Theorem 22], which plays an important role

in the context of the G-domains, for G-type rings.

Theorem 3.10. Let R ⊆ T be rings and suppose that T is strongly algebraic over R and

countably generated as a ring over R. Then R is a G-type ring if and only if T is a G-type

ring.

Proof. Let Q and L be the total quotient rings of R and T , respectively. Suppose that R

is a G-type ring. Hence, Q = R[S−1], where S is a countable mc-set in R consisting of

regular elements. We note that T [S−1] ⊆ L is integral over Q, by Lemma 3.8. In view

of the latter lemma, we also have t−1 ∈ Q[t] ⊆ T [S−1] for each regular element t ∈ T .

Hence L ⊆ T [S−1], i.e., L = T [S−1] and therefore T is a G-type ring (note, this part

of the proof did not require T to be countably generated over R). Conversely, let T =

R[α1, α2, . . . , αn, . . .] be a G-type ring with L = T [S−1], where S = {s1, s2, . . . , sn, . . .}
consists of regular elements. Clearly, the elements s−1i and αi; i = 1, 2, 3, . . . are integral

over Q, by Lemma 3.8, and consequently satisfy in equations with coefficients in R, which

leading coefficients are regular in R. Let us put asis
−mi
i + · · · = 0 and also biα

ni
i + · · · = 0,

for i = 1, 2, . . . , k, . . .. Now, let R1 be the ring generated by a−1si
and b−1i for all i,

over R. Clearly, R ⊆ R1 ⊆ Q. Now, it is manifest that L is generated by the set

S−1
⋃
{α1, α2, . . . , αn, . . .} over R. Consequently, the latter set generates L over R1. Now,

we note that each element of the set S−1
⋃
{α1, α2, . . . , αn, . . .} is integral over R1, i.e., L

is integral over R1. Since for each regular element t ∈ T , t−1 is integral over R1, we infer

that t−1 ∈ R1[t], see [6, Theorem 15]. This implies that whenever r is a regular element

of R, then r−1 ∈ R1[r] = R1 (note, r is also regular in T , for T is strongly algebraic over

R). Consequently, Q ⊆ R1 and therefore Q = R1. Hence, Q is countably generated over

R, as an algebra, and this completes the proof. �
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