Some results on nonstandard quaternionic numerical ranges of matrices

Document Type : Original Paper

Authors

1 Shahid Bahonar Uniersity of Kerman, Kerman, Iran

2 Kohbanan Education, Kohbanan, Iran

Abstract

Let $\phi$ be a nonstandard involution on the set of all quaternion numbers and $\alpha$ be a quaternion such that $\phi(\alpha) = \alpha$. For any square quaternion matrix $A$, the numerical range of $A$ with respect to $\phi$ (shortly, the nonstandard quaternionic numerical range of $A$), is denoted by $W_\phi^{(\alpha)}(A)$. If $\alpha \neq 0$, then $W_\phi^{(\alpha)}(A)= \phi(\gamma) W_\phi^{(1)}(A) \gamma$ for some quaternion $\gamma$ with $\phi(\gamma) \gamma = \alpha$. So, the focus is on two particular nonstandard quaternionic numerical ranges $W_\phi^{(0)}(A)$ and $W_\phi^{(1)}(A)$. In this paper, a description of the intersection of $W_{\phi}^{(1)}(.)$ with a $2-$dimensional space is given, and then by using it, $W_{\phi}^{(1)}(.)$ is studied for $\phi-$hermitian quaternion matrices. After that, a class of quaternion matrices for which $W_\phi^{(0)}(.)$ and $W_\phi^{(1)}(.)$ are equal, is given. For further research, an open problem in the form of a conjecture is also given.

Keywords

Main Subjects


[1] Adler, S.L., 1995. Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York. DOI: 10.1063/1.2807659
[2] Aghamollaei, Gh., Haj Aboutalebi, N. and Momenaee Kermani, H., 2016. Some results on the
k−numerical range of quaternion matrices. Linear Multilinear Algebra, 64, pp. 2419-2430. DOI:
10.1080/03081087.2016.1158232
[3] Aghamollaei, Gh. and Rahjoo, M., 2018. On quaternionic numerical ranges with respect to nonstandard involutions. Linear Algebra Appl., 540, pp. 11-25. DOI: 10.1016/j.laa.2017.11.013
[4] Au-Yeung, Y.H., 1984. On the convexity of numerical range in quaternion Hilbert spaces. Linear
Multilinear Algebra, 16, pp. 93-100. DOI: 10.1080/03081088408817611
[5] Carvalho, L., Diogo, C. and Mendes, S., 2023. S-spectrum and numerical range of a quaternionic operator. J. Math. Anal. Appl., 519, pp. 126834. DOI: 10.1016/j.jmaa.2022.126834
[6] Jamison, J.E., 1972. Numerical range and numerical radius in quaternionic Hilbert spaces. Doctoral Dissertation, University of Missouri. DOI: not available
[7] Kippenhahn, R., 1951. Uber die Wertvorrat einer Matrix. Math. Nachr., 6, pp. 193-228. DOI:
10.1002/MANA.19510060306
[8] Kuipers, J.B., 2002. Quaternions and Rotation Sequences: A Primer with Applications
to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Princeton. DOI:
10.1515/9780691211701
[9] Nebe, G., 1998. Finite quaternionic matrix groups. Representation Theory, 2, pp. 106-223. DOI:
10.1090/s1088-4165-98-00011-9
[10] Rahjoo, M., Aghamollaei, Gh. and Momenaee Kermani, H., 2021. On the boundedness of quaternionic numerical ranges with respect to nonstandard involutions. Linear Algebra Appl., 610, pp. 59-72. DOI: 10.1016/j.laa.2020.09.036
[11] Rodman, L., 2014. Topics in Quaternion Linear Algebra. Princeton University Press, Princeton.
DOI: 10.23943/princeton/9780691161853.001.0001
[12] Vince, J., 2011. Quaternions for Computer Graphics. Springer, London. DOI: 10.1007/978-1-4471-7509-4
[13] Zhang, F., 1997. Quaternions and matrices of quaternions. Linear Algebra Appl., 251, pp. 21-57. DOI: 10.1016/0024-3795(95)00543-9