Let $I$ be an ideal of $C(X)$. In this paper we show that ${\rm Ann}(I)=O^{\beta X\setminus \theta(I)}$ and $m{\rm Ann}(I)=O^{{\beta X}\setminus int_{\beta X}\theta(I)}$, where $\theta(I)=\bigcap_{f\in I}cl_{\beta X}Z(f)$ and $mI$ is the pure part of $I$. We also show that ${\rm Ann(Ann}(I))=O^{int_{\beta X}\theta(I)}$ and $m{\rm Ann(Ann}(I))=O^{cl_{\beta X}int_{\beta X}\theta(I)}$. Finally we show that a space $X$ is a $\partial$-space if and only if every nonregular prime ideal of $C(X)$ is a $z$-ideal.
Mohamadian, R. (2024). Annihilator of ideals in $C(X)$. Journal of Advanced Mathematical Modeling, 14(3-English), 94-107. doi: 10.22055/jamm.2025.47618.2300
MLA
Mohamadian, R. . "Annihilator of ideals in $C(X)$", Journal of Advanced Mathematical Modeling, 14, 3-English, 2024, 94-107. doi: 10.22055/jamm.2025.47618.2300
HARVARD
Mohamadian, R. (2024). 'Annihilator of ideals in $C(X)$', Journal of Advanced Mathematical Modeling, 14(3-English), pp. 94-107. doi: 10.22055/jamm.2025.47618.2300
CHICAGO
R. Mohamadian, "Annihilator of ideals in $C(X)$," Journal of Advanced Mathematical Modeling, 14 3-English (2024): 94-107, doi: 10.22055/jamm.2025.47618.2300
VANCOUVER
Mohamadian, R. Annihilator of ideals in $C(X)$. Journal of Advanced Mathematical Modeling, 2024; 14(3-English): 94-107. doi: 10.22055/jamm.2025.47618.2300