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Abstract. In this paper, we propose a numerical method for the smooth solution of a
system of linear Volterra integral equations. This method is a generalization of the finite
difference method proposed in [11] and [12] for scalar linear Volterra integral equations.
Error analysis of this method is presented via asymptotic expansion of the absolute error,
and verification of accuracy is examined by two illustrative test problems.

1. Introduction

Extracting the formulation of a large number of physical models in terms of integral
equations (IEs) is a classical theoretical methodology wildly utilized in literature [5, 6,
10, 8, 14, 15]. Linear and nonlinear Volterra and Fredholm integral equations have been
studied extensively by many authors using various methods and techniques [2, 3, 7, 13].
The present study is concerned with the numerical solution of a system of linear weakly
singular Volterra integral equations (VIEs) in conjunction with extrapolation procedures.
Let Tf > 0 and D = {(t, τ) : 0 ≤ τ ≤ t ≤ Tf}. Consider the Banach spaces of the vector
and matrix valued functions V = C([0, Tf ];RN) and W = C(D;MN×N(R)) equipped with
the following norms

∥f∥V = sup
0≤t≤Tf

∥f(t)∥2, f ∈ V,
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and

∥K∥W = sup
(t,τ)∈D

∥K(t, τ)∥2, K ∈ W,

where ∥.∥2 is the standard vector, matrix 2- norms

∥v∥2 = (vT .v) 1
2 ,v ∈ RN ; ∥K∥2 = sup

0̸=v∈RN

∥Kv∥2
∥v∥2

,

and T is the standard transpose operator. In this paper, for the sake of clarity and brevity,
all matrices and matrix valued functions are denoted in upper case, all vectors are denoted
in lower case bold and scalars are denoted by plain lower case. Finally, the superscripts
and subscripts are mostly used for component and function values at nodal points or as
index respectively. This study provides an extension of finite difference method proposed
in [12] and [11] to solve the system of linear weakly singular VIEs of second kind as follows

(1.1) u(t) = f(t) +
∫ t

0

K(t, τ)Φ(t, τ)u(τ)dτ,

where the functions f(t) = [f 1(t), f 2(t), ..., fN(t)]T ∈ V, and K(t, τ) = [kpq(t, τ)] ∈ W,

are known and u(t) = [u1(t), u2(t), ..., uN(t)]T is unknown. In the context of the weakly
singular integral equations, we assume

Φ(t, τ) = [φpq(t, τ)] ∈ MN×N(R),

where φpq is of either the form

Case I.: φpq(t, τ) = (t− τ)−νpq , νpq ∈ R, νpq < 0 (Regular type),
Case II.: φpq(t, τ) = (t− τ)−νpq , νpq ∈ R, 0 < νpq < 1 (Abel type),
Case III.: φpq(t, τ) = logγpq(t− τ), γpq ∈ R, γpq > 0 (Logarithmic type).

We can easily show that the system (1.1) can be transformed to the following system of
integral equations

(1.2) u(t) = f(t) +
∫ t

0

K(t, τ)Φ̂(t, τ)(t− τ)−νu(τ)dτ, 0 < v < 1,

where ν = max νpq and for all t ̸= τ

φ̂pq(t, τ) = (t− τ)ν−νpq , 0 < νpq < 1,

or

φ̂pq(t, τ) = (t− τ)νlogγpq(t− τ).
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It is clear that in I,II and III, the matrix valued function Φ̂ is continuous on D or more
briefly Φ̂ ∈ W . Similar to the scalar equations, the solvability results for the system (1.1)
can be achieved via the system (1.2). It is worth to note that the existence and uniqueness
of solution of the system (1.2) may be proved by a formal generalization of the scalar case
[2, 11].
It is shown that for given smooth vector and matrix functions f and K, the unique
solution of the equation (1.1) may have weak singularity at the end point of the interval
[0, Tf ) [3, 9]. However, there are integral equations (possibly originating from an initial
boundary value problem or systems of initial value problems) wherein the smoothness of
their solution is known on [0, Tf ].
In [12] and [11], a finite difference method is proposed for the numerical solution of (1.1)
in the scalar case, where the corresponding system for the discretized problem leads to a
lower triangular matrix. In this paper, we consider a generalization of this method for a
system of weakly singular Volterra integral equations and show that it leads to a block
in the lower triangular system. A comparison between this method and the standard
product integration method shows the advantages and drawbacks of the finite difference
method.
This paper is organized as follows: In section 2, the numerical scheme is described. In
section 3, the solvability and accuracy of the discretized problem obtained using the
proposed finite difference method are analyzed. Section 4 contains two numerical examples
to show the robustness of the numerical method for solving regular and weakly singular
VIEs.

2. Numerical Scheme

For a given positive integer n, let 0 = t0 < t1 < ... < tn = Tf be a partition of [0, Tf ],
ti = ih, h = Tf/n, fi = f(ti), ui = u(ti), and Kij = K(ti, tj), for j = 0, 1, ..., i and
i = 0, 1, ..., n.
To discretize the integral equation, we collocate (1.1) at the grid points t = ti as follows

(2.1) u(ti) = f(ti) +
∫ ti

0

K(ti, τ)Φ(ti, τ)u(τ)dτ,
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or

(2.2) u(ti) = f(ti) +
i∑

j=1

∫ tj

tj−1

K(ti, τ)Φ(ti, τ)u(τ)dτ.

For simplicity, we derive the numerical scheme in two steps.

• STEP 1. On each subinterval [tj−1, tj], we approximate K(ti, τ) by K(ti, tj) and
write

(2.3) K(ti, τ) = Kij + Λ
(11)
ij , τ ∈ [tj−1, tj],

where Kij,Λ
(11)
ij ∈ MN×N(R) and Λ

(11)
ij denotes the truncation error of approxima-

tion of K see [13]. Therefore, for i = 1, ..., n, we have

ui = fi +
i∑

j=1

∫ tj

tj−1

[
Kij + Λ

(11)
ij

]
Φ(ti, τ)u(τ)dτ

= fi +
i∑

j=1

Kij

∫ tj

tj−1

Φ(ti, τ)u(τ)dτ + Λ
(12)
i ,(2.4)

where Λ
(12)
i ∈ RN is the truncation error of approximation of u on [0, ti]. For

notation simplicity let

(2.5) ui = fi +
i∑

j=1

KijΩij + Λ
(12)
i ,

where

(2.6) Ωij =

∫ tj

tj−1

Φ(ti, τ)u(τ)dτ, Ωij ∈ MN×N(R).

• STEP 2. First by using the integral by parts scheme(see [17]) the following identity
can be derived

(2.7)
∫ tj

tj−1

Φ(ti, τ)u(τ)dτ = Qij(tj)u(tj)−
∫ tj

tj−1

Qij(s)u′(s)ds,

where

Qij(t) =

∫ t

tj−1

Φ(ti, τ)dτ.
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Next, we apply the finite difference formula to the integral operator on the right hand
side of (2.7). We can write

(2.8) Ωij = Qij(tj)uj −

(
uj − uj−1

h

∫ tj

tj−1

Qij(s)ds+ Λ
(21)
ij

)
,

where Λ
(21)
ij denotes the local truncation error on the subinterval [tj−1, tj].

Since Ωij in (2.8) is a linear combinations of uj and uj−1, we can rearrange and write
the equation(2.8) as

(2.9) Ωij = Aijuj + Bijuj−1 − Λ
(21)
ij , Aij, Bij, Λij ∈ MN×N(R),

where

(2.10) Aij = Qij(tj)−
1

h

∫ tj

tj−1

Qij(τ)dτ, Bij =
1

h

∫ tj

tj−1

Qij(τ)dτ.

Substituting Ωij from (2.9) in (2.5) gives

ui = fi +
i∑

j=1

Kij

(
Aijuj + Bijuj−1 − Λ

(21)
ij

)
+ Λ

(12)
i

= fi +
i∑

j=1

Kij (Aijuj + Bijuj−1) + Λ
(22)
i ,(2.11)

where Λ
(22)
i ∈ RN is defined in terms of the truncation errors Λ

(12)
i and Λ

(21)
ij . Equation

(2.11) together with the initial condition u0 = f0 characterizes the following finite differ-
ence method.

Remark 2.1. The recursive process

(2.12)
{

uh
i = fi +

∑i
j=1 Kij(Aijuh

j + Bijuh
j−1), i = 1, . . . , n,

uh
0 = f0,

generates an approximate solution for the VIE (1.1), where uh
i = [u1h

i , u2h
i , ..., uNh

i ]T is an
approximation to ui = [u1

i , u
2
i , ..., u

N
i ]

T , provided that Aij and Bij satisfy the (2.10).

Now if we introduce U = [u0, u1, ..., un]
T , then Uh = [uh

0 , u
h
1 , ..., u

h
n]

T may be considered
as an approximation for U.
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Remark 2.2. Determining the unknown vector uh
i at each step of the numerical scheme

(2.12) involves a solution of N × N linear system. The coefficient matrix of this system
is IN − KiiAii where IN is the identity matrix in MN×N(R).

Remark 2.3. The numerical scheme (2.12), is equivalent to the linear system

(2.13) MhUh = Fh,

where Uh ∈ RN(n+1) is unknown, Mh is a block lower triangular matrix and Fh =

[f0, f1, ..., fN ]
T ∈ RN(n+1).

Remark 2.4. Using back substitution algorithm, the linear system (2.13) can be solved
without storing the coefficient matrix completely. This is one of the advantages of the
finite difference method that reduces computer storage.

Remark 2.5. The linear system (2.13) can also be solved using a parallel back substitu-
tion algorithms. This property (blocked lower triangular) makes implementation of the
finite difference method faster than the other methods.

Remark 2.6. The shape of assembled blocked lower triangular matrix Mh is shown in
Figure 1. This matrix corresponds to N = 3, n = 17 and Mh is a 17× 17 block matrix in
which each block is a 3× 3. Figure 1 shows that a blocked lower triangular matrix is not
necessarily a lower triangular matrix. It is worth to note that the first block (top-left) is
a diagonal matrix.

Figure 1. A simple view of the blocked lower triangular matrix results
from the numerical scheme (2.12)
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3. Main Results

Lemma 3.1. For any matrix G = [gij(h)] , if gij(h) = O(δ(h)) as h → 0, then for
p = 1, 2,∞

∥G∥p = O(δ(h)),

where ∥.∥p denotes the standard matrix operator norm.

Proof. According to the definitions ∥G∥1 = maxj
∑

i |gij| and ∥G∥∞ = maxi
∑

j |gij|,
it is clear that the result is true for ∥.∥1 and ∥.∥∞ . The result for ∥.∥2 is a consequence
of the inequality

∥G∥2 ≤ (∥G∥1.∥G∥∞)
1
2 .

For more details see [4].

Lemma 3.2. For the sufficiently smooth functions f and K the following results can be
derived

I.: Aij = O(h1−ν), i = 0, 1, ..., n, , j = 0, 1, ..., i.

II.: For the sufficiently small h, ∥KiiAii∥2 ≤ 1, i = 0, 1, ..., n.
III.: The matrices IN − KiiAii, i = 0, 1, ..., n are non-singular.
IV.: The numerical scheme (2.12) has a unique solution.

Proof. The proof of results I, II and IV are straightforward and thus omitted. The
statement III is a consequence of the geometric series. For more details we refer the
readers to [4].

Lemma 3.3. Suppose that the input data f and K are sufficiently smooth functions, then

∥Aij∥2 = O(h1−ν), ∥Bij∥2 = O(h1−ν).

Proof. The proof of this result is a consequence of the definition Aij and Bij in (2.10).

Lemma 3.4. For the following system of weakly singular VIE

(3.1) u(t) = f(t) + µ

∫ t

0

K(t, τ)Φ(t, τ)u(τ)dτ.

where µ is a real number, and f and K are sufficiently smooth functions, if h and µ are
sufficiently small, then (2.13) is a diagonally dominant system.
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Proof. The proof of this lemma is based on definitions (2.10) and asymptotic behavior
of Aij and Bij.

The following lemma gives the order of truncation error corresponding to STEP 1.

Lemma 3.5. If u and K are sufficiently smooth functions, then

(3.2) ∥
∫ tj

tj−1

K(ti, τ)Φ(ti, τ)u(τ)dτ − Ki,j

∫ tj

tj−1

Φ(ti, τ)u(τ)dτ ∥2= O(h2).

where ∥.∥2 is the standard matrix operator 2-norm.

Proof. The proof is a direct consequence of the Taylor expansion theorem with integral
reminder term (see [1], theorem 9.29) and using the inequality maintained in the proof of
lemma 1.

Remark 3.6. In STEP 1, instead of using approximations

K(ti, τ) ≈ K(ti, tj), or K(ti, τ) ≈ K(ti, tj−1), τ ∈ [tj−1, tj],

one can use more accurate interpolation schemes to obtain a method with a higher order
truncation error. However, in this work we preferred a weaker approximation technique
to avoid increasing the run-time.

The following lemma gives the order of truncation error corresponding to the approxi-
mation in STEP 2.

Lemma 3.7. Suppose that u ∈ C2([0, T ],RN). Then

1.: For case II

(3.3) ∥
∫ tj

tj−1

Qij(τ)u′(τ)dτ − uj − uj−1

h

∫ tj

tj−1

Qij(τ)dτ∥2 = c1h
4−ν +O(h5−ν).

2.: For case III,

(3.4) ∥
∫ tj

tj−1

Qij(τ)u′(τ)dτ − uj − uj−1

h

∫ tj

tj−1

Qij(τ)dτ∥2 = c1h
2|logh|+O(h2),

where ∥.∥2 is the standard vector 2-norm and c1 is a constant not depending on h.
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Proof. The proof is a direct consequence of the Taylor expansion theorem and the
proof of lemma 4.5 given in [12].

Theorem 3.8 (Main Theorem). Consider the linear operator Ψ as

(3.5) Ψu =

∫ t

0

K(t, τ)Φ(ti, τ)u(τ)dτ.

Let Ψh
n be the corresponding discrete operator defined by

(3.6) Ψh
nu =

n∑
j=1

Kij(Aijuj + Bijuj−1),

then the asymptotic expansion of truncation errors for cases I and II have the form

1.: For the case I and II:

(3.7) ∥(Ψ−Ψh
n)u∥2 =

{
c1h+ c2h

2 +O(h3), for ν ≤ 0,

c1h+ c2h
2 + c3h

3−ν +O(h3), for 0 < ν < 1.

2.: For the case III:

(3.8) ∥(Ψ−Ψh
n)u∥2 = c1h+ c2h

2|logh|+O(h2),

where ∥.∥2 is the standard vector 2-norm and c1, c2 and c3 are constants independent of
h.

Proof. The proof is a consequence of the main theorems in [12] and lemma 3.1.

Remark 3.9. In lemma 3.5, lemma 3.7 and theorem 3.8, we can use general ∥.∥p; the
standard matrix, vector p- norms for p = 1, 2,∞.

4. Numerical Experiments

In this section the accuracy and ability of the present finite difference method for finding
the smooth solution for a system of linear VIEs are illustrated by using two types of such
equations, namely regular and weakly singular systems of VIEs. To solve weakly singular
equations, our numerical experiments in Case I show that the accuracy of the finite
difference method as a function of ν is a decreasing function, i.e. the error of approximate
solution increases as ν increase from 0 to 1. Moreover, the comparison between the results
in Cases I and II indicates that this method is more accurate in Case II than the Case I.
Therefore, we restrict our numerical examples to Case I, though these assertions cannot
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be true in general. Let E(µ) = ∥U − Uh∥∞ be the absolute error of the approximation,
and

(4.1) ∥Ψ∥W = |µ| max
0≤t≤1

∥
∫ t

0

K(t, τ)dτ∥2,

denotes the Lipschitz factor corresponding to the integral operator [2, 13]

(4.2) Ψu =

∫ t

0

K(t, τ)u(τ)dτ.

Also, let C(µ) be the condition number of the matrix Mh defined in (2.13), Ũh defined
by

(4.3) Ũh
= 2Uh

2 − Uh,

shows the extrapolated solution and Ẽ(µ) = ∥U− Ũh∥∞ denotes the extrapolation error.
In all tables, the numerical values for errors, condition numbers and Lipschits factors are
rounded to three significant digits, and the last column shows that the matrixt Mh is
either a diagonally dominant (DD) matrix or not.

Example 4.1. In this example we consider a regular VIE and compare its exact solution
with the finite difference solution. This example is given in [16]. Consider the following
system of integral equations{

u(1)(t) = f (1)(t) +
∫ t

0
(t− τ)3u(1)(τ)dτ +

∫ t

0
(t− τ)2u(2)(τ)dτ

u(2)(t) = f (2)(t) +
∫ t

0
(t− τ)4u(1)(τ)dτ +

∫ t

0
(t− τ)3u(2)(τ)dτ

(4.4)

The exact solution of this system of equations may be derived as

u(1)(t) = 1 + t2, u(2)(t) = 1 + t− t3,

where

f (1)(t) = 1 + t2 − t3/3− t3/3, f (2)(t) = 1 + t− 4t3/3− t4/4− t5/12 + t7/140.

Assume u(t) = [u(1)(t), u(2)(t)]T , f(t) = [f (1)(t), f (2)(t)]T and

K(t, τ) =

(
(t− τ)3 (t− τ)2

(t− τ)4 (t− τ)3

)
,

then the system (4.4) take the form

(4.5) u(t) = f(t) +
∫ t

0

K(t, τ)u(τ)dτ.



A FINITE DIFFERENCE METHOD FOR SMOOTH 11

For a more detailed discussion of the finite difference method, instead of equation (4.5)
we consider following equation

(4.6) u(t) = f(t) + µ

∫ t

0

K(t, τ)u(τ)dτ,

where µ is an arbitrary parameter. The exact solution for this problem considered as

u(t) = [1 + t2, 1 + t− t3]T ,u ∈ C2([0, 1],R2).

The numerical results for µ = 1, n = 32, 64, 128, 256 illustrated in Table 1, and for µ =

2, n = 32, 64, 128, 256 given in Table 2.

Table 1. The amounts of C(µ), L(µ), E(µ), Ẽ(µ) and DD when µ = 1

and n = 32, 64, 128, 256 for Example 4.1.

n C(µ) L(µ) E(µ) Ẽ(µ) DD

32 2.47 0.583 0.0189 0.000395 True
64 2.50 0.583 0.00951 0.000100 True
128 2.51 0.583 0.00477 0.0000253 True
256 2.52 0.583 0.00239 6.35E-6 True

Table 2. The amounts of C(µ), L(µ), E(µ), Ẽ(µ) and DD when µ = 2

and n = 32, 64, 128, 256 for Example 4.1.

n C(µ) L(µ) E(µ) Ẽ(µ) DD

32 4.56 1.17 0.0391 0.000933 False
64 4.72 1.17 0.0196 0.000239 False
128 4.76 1.17 0.00985 0.0000604 False
256 4.77 1.17 0.00493 0.0000152 False

Figure 2 demonstrates the graph of (L(µ), C(µ)), 0 ≤ µ ≤ 3 in the coordinate system
(L,C) and the graph of (L(µ), Ẽ(µ)) in the coordinate system (L, Ẽ).

In Figure 2a the points with larger point size indicate that for corresponding value
of the variable µ, the operator K is a contraction mapping. Similarly, the points with
the larger point size in Figure 2b illustrate that the matrix Mh is a diagonally dominant
matrix. This property verifies the result of Lemma 3.3.
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a. The graph of C(µ) b. The graph of Ẽ(µ)

Figure 2. The graph of the absolute error Ẽ(µ) (a) and the condition
numbers C(µ) (b) for Example 4.1..

Example 4.2. In this example, we examine the proposed finite difference method to
solve a weakly singular system of the Volterra integral equation that satisfies a smooth
solution. Consider the system

(4.7) u(t) = f(t) + µ

∫ t

0

K(t, τ)Φ(t, τ)u(τ)dτ,

where

K(t, τ) =

(
1 t− τ

t− τ 1

)
,Φ(t, τ) = (t− τ)−1/2I2,

f(t) = [t− 4t3/2(35 + 4t2)/315, t2 − 4t5/2/9]t

and I2 shows the 2×2 identity matrix. The exact solution of this equation can be derived
as

u(t) = [t, t2]T ,u ∈ C2([0, 1],R2).

In this example µ is an arbitrary parameter. Using the notation given in example(4.1),
the numerical results for µ = 1/4, n = 32, 64, 128, 256, 512 illustrated in Table 3, and for
µ = 1/2, n = 32, 64, 128, 256, 512 given in Table 4.

Similar to Example 4.1, the graph of L(µ), 0 ≤ µ ≤ 1 in the coordinate system (µ, L)

and the graph of Ẽ(µ), 0 ≤ µ ≤ 1 in the coordinate system (µ, Ẽ) are illustrated in
Figure 3. In Figure 3a the points with larger point size indicate the contraction mapping
property of the operator K for the corresponding values of µ. Furthermore, the points
with the larger point size in Figure 3b shows that the matrix Mh is diagonally dominant.
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Table 3. The amounts of C(µ), L(µ), E(µ), Ẽ(µ) and DD when µ = 1
4

and n = 32, 64, 128, 256 for Example 4.2.

n C(µ) L(µ) E(µ) Ẽ(µ) DD

32 3.34 0.375 0.00340 0.000327 True
64 3.41 0.375 0.00175 0.000109 True
128 3.45 0.375 0.000895 0.0000369 True
256 3.48 0.375 0.000454 0.0000126 True
512 3.50 0.375 0.000229 4.33E-6 True

Table 4. The amounts of C(µ), L(µ), E(µ), Ẽ(µ) and DD when µ = 1
2

and n = 32, 64, 128, 256 for Example 4.2.

n C(µ) L(µ) E(µ) Ẽ(µ) DD

32 11.9 0.750 0.0109 0.00121 False
64 12.3 0.750 0.00563 0.000403 False
128 12.5 0.750 0.00289 0.000135 False
256 12.7 0.750 0.00147 0.0000458 False
512 12.8 0.750 0.000741 0.0000156 False

a. The graph of C(µ) b. The graph of Ẽ(µ)

Figure 3. The graph of the absolute error Ẽ(µ) (a) and the condition
numbers C(µ) (b) for Example 4.2.

All numerical computations in this work are generated using Mathematica (version
5.5) and Matlab codes, in a Linux Cluster environment, at the Math Computing Center,
Institute for the Research in Fundamental Science IPM.
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5. Conclusion

In this paper we presented a fast numerical scheme for generating the smooth solutions
of VIEs having regular or weakly singular (non-logarithmic) kernels. It is apparent that
the order of the truncation is lower than the ones in the previously reported methods.
However, it is shown that the numerical results can be improved by applying the extrap-
olation technique. For proper comparisons of this method with other methods, we need
to develop a convergence theory. This could be investigated in future works.
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