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Abstract. For an R-module M and f ∈ M∗ = Hom(M,R), let Zf (M) and Regf (M)

be the sets of all zero-divisors elements and regular elements of M with respect to f ,

respectively. In this paper, we introduce the total graph of M with respect to f , denoted

by T (Γf (M)), which is the graph with all the elements of M as vertices, and for distinct

elements m,n ∈ M , m and n are adjacent if and only if m + n ∈ Zf (M). We also

study the subgraphs Z(Γf (M)) and Reg(Γf (M)) with vertices Zf (M) and Regf (M),

respectively.

1. Introduction

In this paper, every ring is a commutative ring with identity and every module is

unitary. The main idea of the zero-divisor graph of a ring R was first introduced by Beck

[9]. He takes all the elements of R and x, y ∈ R are adjacent if and only if xy = 0. In [3],

Anderson and Badawi introduced the total graph of R, denoted by T (Γ(R)), taking all

elements of R as vertices, the vertices x and y are adjacent if and only if x + y ∈ Z(R).

Reg(Γ(R)) is the subgraph of T (Γ(R)) with vertices Reg(R) = R\Z(R) and x, y ∈ Reg(R)

are adjacent if and only if x+ y ∈ Z(R). In [4] and [5], Anderson and Badawi continue to

research on total graphs. For further results on total graphs on algebraic structures see
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[1], [2], [6], [10]-[18].

Let M be an R-module and f ∈ M∗ = Hom(M,R) be an R-homomorphism. We denote

the zero-divisor elements of M with respect to f by Zf (M) where

Zf (M) = {m ∈M | mf(n) = 0 or nf(m) = 0 for some 0 6= n ∈M}

then the zero-divisor graph of M with respect to f is denoted by Γf (M). For distinct

elements x, y ∈ Zf (M), x and y are adjacent if and only if xf(y) = 0 or yf(x) = 0. The

zero-divisor graph of M with respect to f has been studied extensively in [7] and [8]. In the

next section we consider the graph of an R-module M with respect to f ∈ Hom (M,R).

Let G be an (undirected) graph. We say that G is connected if there exists a path between

any two distinct vertices. For distinct vertices x and y in G, the distance between x and

y, denoted by d(x, y), is the length of a shortest path connecting x and y (d(x, x) = 0 and

d(x, y) =∞ if no such path exists). The diameter of G is

diam(G) = sup{d(x, y) | x and y are vertices of G}.

A cycle of length n in G is a path of the form x1− x2− x3− · · · − xn− x1, where xi 6= xj

when i 6= j. We define the girth of G, denoted by gr(G), as the length of a shortest

cycle in G, provided G contains a cycle; otherwise, gr(G) = ∞. A graph is complete

if any two distinct vertices are adjacent. By a complete subgraph we mean a subgraph

that is complete as a graph. In this article all subgraphs are induced subgraphs, where a

subgraph G′ of a graph G is an induced subgraph of G if two vertices of G′ are adjacent

in G′ if and only if they are adjacent in G. The reader is referred to [19] and [20] for

undefined terms and concepts.

2. When Zf (M) is a submodule

Let M be an R-module and f ∈M∗ = Hom(M,R) be an R-homomorphism. We denote

the zero-divisor elements of M with respect to f by Zf (M) and the set of non-zero-divisor

(regular) elements of M with respect to f by Regf (M) = M − Zf (M). The total graph

of M with respect to f , denoted by T (Γf (M)), is a graph with vertices

V = {m ∈M | m+ n ∈ Zf (M) for some n ∈M}

and two elements m,n in V are adjacent if and only if m+ n ∈ Zf (M).
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Let M be an R-module, the proper submodule N of M is called a prime submodule if

mr ∈ N , for r ∈ R and m ∈ M implies that m ∈ N or Mr ⊆ N . By the definition of

Zf (M) it is clear that in general Zf (M) is not a submodule of M . The next proposition

state that Zf (M) as a submodule is prime.

Proposition 2.1. Let R be a ring, M be an R-module and f ∈M∗. If Zf (M) is a proper

submodule of M , then it is a prime submodule of M .

Proof. Let mr ∈ Zf (M) and m /∈ Zf (M). Then, there exists 0 6= y ∈ M such that

mrf(y) = 0 or yf(mr) = 0. In any case, we must have yr = 0. Therefore, Mrf(y) = 0

and consequently Mr ⊆ Zf (M) which implies that r ∈ (M : Zf (M)). �

Corollary 2.2. Let M be an R-module and f ∈ M∗ such that Zf (M) is a submodule of

M , then 2x ∈ Zf (M) for all x ∈Reg(M) if and only if for all y ∈M , 2y ∈ Zf (M).

Proof. If 2x ∈ Zf (M), by Proposition 2.1, since Zf (M) is a submodule of M , so it is a

prime submodule of M . Also x /∈ Zf (M), then 2M ⊆ Zf (M). The converse is clear. �

Let R be a ring, M be an R-module and 0 6= f ∈M∗. One may inquire about the rela-

tion between the zero-divisor graph of R and the zero-divisor graph of M with respect to

f . The following proposition and theorem state some relations between Z(R) and Zf (M).

Proposition 2.3. Let M be an R-module and f be an epimorphism in M∗. Then 2 ∈
Z(R) if and only if 2x ∈ Zf (M) for all x ∈Regf (M).

Proof. Let 2 ∈ Z(R), then there exists 0 6= r ∈ R such that 2r = 0. So there exists y ∈M
such that r = f(y). Therefore 2xf(y) = 0, hence 2x ∈ Zf (M).

Conversely, if 2x ∈ Zf (M) for some x ∈Regf (M), then we have two cases. In the first

case, there exists y ∈ M such that 2xf(y) = xf(2y) = 0, by regularity of x we conclude

that f(2y) = 0. Hence 2f(y) = f(2y) = 0 which implies that 2 ∈ Z(R).

In the second case, we have yf(2x) = 0, then 2yf(x) = 0, so 2y = 0, f(2y) = 2f(y) =

0. Now, if f(y) 6= 0 then 2 ∈ Z(R), and if f(y) = 0, then xf(y) = 0, which is a

contradiction. �

Proposition 2.4. Let M be an R-module and f ∈M∗ be an epimorphism. If the identity

of the ring R is a sum of n zero-divisors, then every element of the module M is the sum

of at most n elements of Zf (M).
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Proof. If a ∈ Z(R) and x ∈ M , then there exists 0 6= r ∈ R such that ar = 0, so there

exists 0 6= t ∈ M such that r = f(t) and axf(t) = 0 and hence ax ∈ Zf (M). So for all

m ∈M
1 = z1 + ...+ zn, for some zi ∈ Z(R) =⇒ m = z1m+ ...+ znm

is the sum of at most n element of Zf (M). �

Corollary 2.5. Let the identity of a ring R be a sum of n zero-divisors, M be an R-

module and f ∈ M∗ be an epimorphism. Then Zf (M) is submodule of M if and only if

Zf (M) = M .

Example 2.6. Let R = Z6 and M = Z6 as a Z6-module. We know that Z(R) =

{0̄, 2̄, 3̄, 4̄}. For f : M → R via f(x̄) = 2x̄ we have Zf (M) = Z6. Figure 1 shows the total

zero-divisor graph of Z6 as a ring and Figure 2 shows total zero-divisor graph of Z6 as a

module over itself with respect to f (this shows that the condition f be an epimorphism

in Corollary 2.5 cannot be omitted).

Figure

1

Figure

2

The next theorem gives a partial answer to this question, when Z(R) being an ideal

implies that Zf (M) is submodule of M?

Theorem 2.7. If Z(R) = 〈z〉 is a principal ideal of R and z ∈ Nil(R), then Zf (M) is

the submodule of M .

Proof. Let Z(R) = 〈z〉 such that z ∈ Nil(R) and assume that Zf (M) is not a submodule

of M , then there exist m1,m2 ∈ Zf (M) such that m1 +m2 /∈ Zf (M).

So there exist n1, n2 ∈Me such that

1) m1f(n1) = 0 or n1f(m1) = 0
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2) m2f(n2) = 0 or n2f(m2) = 0

a) If m1f(n1) = 0 and m2f(n2) = 0, then (m1+m2)f(n1f(n2)) = 0, thus n1f(n2) = 0

(because m1 + m2 /∈ Zf (M)), f(n1)f(n2) = 0 and so f(n1), f(n2) ∈ Z(R) = 〈z〉.
Therefore f(n1) = azk and f(n2) = bzt such that a, b /∈ Z(R). Let k ≥ t, then

(m1 + m2)bf(n1) = 0 (bf(n1) 6= 0), so m1 + m2 ∈ Zf (M) which is contrary to

assumption that m1 +m2 /∈ Zf (M).

b) If n2f(m2) = 0 and m1f(n1) = 0, then f(m1)f(n1) = 0, n2f(n1)f(m1 + m2) = 0

and so n2f(n1) = 0 (because m1 + m2 /∈ Zf (M)), f(n1)f(n2) = 0, therefore

f(n1), f(n2) ∈ Z(R) = 〈z〉.
So f(n1) = azk and f(n2) = bzt such that a, b /∈ Z(R). Let k ≥ t, then

bf(n1)f(m1 +m2) = 0 so f(n1)f(m1 +m2) = 0. Now, we consider two cases:

1) If Mf(n1) = 0, then (m1 +m2)f(n1) = 0 which is a contradiction.

2) If Mf(n1) 6= 0, then there exists 0 6= x ∈ M such that xf(n1) 6= 0 and

xf(n1)f(m1 +m2) = 0 so it is contrary.

c) If n2f(m2) = 0 and n1f(m1) = 0, then f(n2)f(m2) = 0, so n1f(n2)f(m1+m2) = 0,

n1f(n2) = 0 (because m1 + m2 /∈ Zf (M) ), thus f(n1)f(n2) = 0 and it is similar

to (b).

Thus Zf (M) is a submodule of M . �

Let M be an R-module and Zf (M) be a submodule of M . Then Z(Γf (M) (the in-

duced subgraph of T (Γf (M)) by Zf (M)) is a complete subgraph of T (Γf (M)). Since for

every x, y ∈ Zf (M) we have x + y ∈ Zf (M) and so x −−y is a path in Z(Γf (M)). It is

also worth mentioning that Z(Γf (M)) is disjoint from the induced subgraph of T (Γf (M))

by Regf (M) which is denoted by Reg(Γf (M)), since for x ∈ Zf (M) and y ∈Regf (M)

we have x + y ∈Regf (M) and so Z(Γf (M)) and Reg(Γf (M)) are disjoint subgraphs of

T (Γf (M)).

The next proposition determines regular subgraph of total graph under some conditions.

Theorem 2.8. Let M be an R-module, Zf (M) be a submodule of M , f ∈ M∗ be an

epimorphism, |Zf (M)| = α and | M
Zf (M)

| = β.
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1) If 2 ∈ Z(R), then Reg(Γf (M)) is the union of β − 1 disjoint Kα,s.

2) If 2 /∈ Z(R), then Reg(Γf (M)) is the union of β−1
2

disjoint Kα,α,s.

Proof. 1) Assume that 2 ∈ Z(R) and let x ∈Regf (M). Then each coset x+Zf (M) is

a complete subgraph of Reg(Γf (M)) since by Proposition 2.3 (x+ z1) + (x+ z2) =

2x+z1+z2 ∈ Zf (M) for all z1, z2 ∈ Zf (M). Distinct cosets form disjoint subgraphs

of Reg(Γf (M)) since if x+ z1 and y+ z2 are adjacent for some x, y ∈Regf (M) and

z1, z2 ∈ Zf (M), then x+y = (x+z1)+(y+z2)− (z1 +z2) ∈ Zf (M), and hence by

Proposition 2.3 x− y = (x+ y)− 2y ∈ Zf (M) since Zf (M) is a submodule of M

and 2 ∈ Z(R), which implies that x+Zf (M) = y +Zf (M). It is a contradiction.

Thus Reg(Γf (M)) is the union of β − 1 disjoint subgraphs x + Zf (M), each of

which is a Kα.

2) Now assume that 2 /∈ Z(R), and let x ∈Regf (M). Then no two distinct elements

in x + Zf (M) are adjacent since (x + z1) + (x + z2) ∈ Zf (M) for z1, z2 ∈ Zf (M)

implies that 2x ∈ Zf (M) and so 2 ∈ Z(R) which is contradiction. Also, two

cosets x+ Zf (M) and −x+ Zf (M) are disjoint, and each element of x+ Zf (M)

is adjacent to each element of −x+Zf (M). Thus (x+Zf (M))∪ (−x+Zf (M)) is

a complete bipartite subgraph of Reg(Γf (M)). Furthermore, if y + z1 is adjacent

to x + z2 for some x, y ∈Regf (M) and z1, z2 ∈ Zf (M), then x + y ∈ Zf (M) and

hence y + Zf (M) = −x + Zf (M). Thus Reg(Γf (M)) is the union of (β − 1)/2

disjoint subgraphs (x+ Zf (M)) ∪ (−x+ Zf (M)), each of which is a Kα,α.

�

The set of zero-divisors Zf (M) is a submodule of M if and only if 〈Zf (M)〉 (the induced

subgraph of T (Γf (M)) by Zf (M)) is a complete connected component of T (Γf (M)). In

the next theorem we characterized when a regular subgraph is complete, connected and

totally disconnected.

Theorem 2.9. Let M be an R-module and f ∈ M∗ an epimorphism. If Zf (M) is a

submodule of M , then

1) Reg(Γf (M)) is complete if and only if either | M
Zf (M)

| = 2 or | M
Zf (M)

| = |M | = 3.

2) Reg(Γf (M)) is connected if and only if either | M
Zf (M)

| = 2 or | M
Zf (M)

| = 3.
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Proof. Let | M
Zf (M)

| = β and |Zf (M)| = α.

1) Let Reg(Γf (M)) be complete, then by Theorem 2.8, Reg(Γf (M)) is a single Kα

or K1,1. If 2 ∈ Z(R), then β − 1 = 1 and so β = 2, hence | M
Zf (M)

| = 2. If

2 /∈ Z(R), then α = 1 and (β−1)
2

= 1. Thus β = 3 and Zf (M) = {0}, hence

|M | = | M
Zf (M)

| = 3.

Conversely, suppose that M
Zf (M)

= {Zf (M), x+Zf (M)}, where x /∈ Zf (M), then

with this fact x + Zf (M) and −x + Zf (M) are adjacent, we have x + Zf (M) =

−x + Zf (M) and so 2x ∈ Zf (M), thus 2 ∈ Z(R). Therefore Reg(Γf (M)) is the

union of β− 1 subgraph Kα of T (Γf (M)). Since β = 2, so it is a single graph Kα.

Now suppose that | M
Zf (M)

| = |M | = 3. We show that 2 /∈ Z(R). If 2 ∈ Z(R),

since f is an epimorphism, thus 2m ∈ Zf (M) = {0} and 2m = 0 which is a

contradiction, since M is a cyclic group with order 3. Thus 2 /∈ Z(R) and so

β = 3, thus (β−1)
2

. Therefore Reg(Γf (M)) is complete.

2) Let Reg(Γf (M)) is connected, then by 2.8, Reg(Γf (M)) is a single Kα or Kα,α.

Then either β − 1 = 1 if 2 ∈ Z(R) or (β−1)
2

= 1 if 2 /∈ Z(R); hence β = 2 or β = 3

respectively. Thus | M
Zf (M)

| = 2 or | M
Zf (M)

| = 3.

conversely by part (1) above, if | M
Zf (M)

| = 2, then Reg(Γf (M)) is connected

and if | M
Zf (M)

| = 3, then we show that 2 /∈ Z(R). Suppose that 2 ∈ Z(R) and
M

Zf (M)
= {Zf (M), x+ Zf (M), y + Zf (M)}, where x, y /∈ Zf (M). Since M

Zf (M)
is a

cyclic group with order 3, we conclude that x+y+Zf (M) = Zf (M). Hence x and

y is adjacent, a contradiction since Reg(Γf (M)) is the union of 2 disjoint (induced)

subgraphs x + Zf (M) and y + Zf (M). Thus 2 /∈ Z(R). By hypothesis, M
Zf (M)

=

{Zf (M), x+ Zf (M), 2x+ Zf (M)}, where x, 2x /∈ Zf (M) and 3x ∈ Zf (M).

Let m,m′ ∈Regf (M). Without loss of generality, we may assume that x +

Zf (M) 6= m + Zf (M) and m + m′ /∈ Zf (M). Then 2x + Zf (M) = m + Zf (M).

If x + Zf (M) = m′ + Zf (M), then m + m′ + Zf (M) = 3x + Zf (M) = Zf (M)

which is contradiction with this fact m + m′ /∈ Zf (M). So we may assume that

2x+Zf (M) = m′+Zf (M), thus m− (m+m′−6x)−m′ is a path in Reg(Γf (M))

since:

(2m− 4x) + (m′ − 2x) ∈ Zf (M)

(m− 2x) + (2m′ − 4x) ∈ Zf (M)
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and so Reg(Γf (M)) is connected.

�
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