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EXACT SOLUTIONS OF (3+1)-DIMENSIONAL WAVE EQUATION
VIA LIE BRACKETS OF SYMMETRIES

HAMID ERFANIAN O. DEHROKHI, S. REZA HEJAZI*

Communicated by: M.Najafikhah

ABSTRACT. In this paper, the Lie symmetry method and Lie brackets of vector fields are
used in order to find some new solutions of (3+1)-dimensional sourceless wave equation.
The obtained solutions are classified to two categories; polynomial and non-polynomial
exact solutions. Because of the properties of the Lie brackets and the symmetries, a
generalized method is implemented for constructing new solutions from old solutions. We
demonstrate the generation of such polynomial and non-polynomial solutions through
the medium of the group theoretical properties of the equation. It is noteworthy that
this method could be used when the equations have two special kinds of symmetries

which will be mentioned below.

1. Introduction

One of the most famous and applicable hyperbolic PDE is the second non-linear (n+1)-

dimensional wave equation with a source term

n

(1.1) g = Y (fi(uw)ug)ar + g(u),

i=1
which is using for the description of waves as they occur in physics such as sound waves,
light waves and water waves. Another usage of Eq. (1.1) is in acoustics, electromagnetics
and fluid dynamics. The quantity u may be, for example, the pressure in a liquid or gas, or
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the displacement, along some specific direction, of the particles of a vibrating solid away
from their resting positions. In this paper a special case of the Eq. (1.1) is considered as

follows
(12) Ut = Ugy + Uygyy + Uz,

then the wide range of solutions with Lie symmetry method are given. This method is
based on the Lie brackets of the symmetries and their relations for finding exact solutions
of differential equations. Symmetries of differential equations can reduce the primary
equation to a simpler form. Then, the solutions of the reduced form are called the sim-
ilarity solutions. In the literature, one can find the classical reduction process [1], and
the moving frame-based reduction process [7, 8, 9, 10]. Also symmetry groups can be
used for classifying different symmetry classes of solutions. A similar work is done for
(241)-dimensional wave equation [11].

As we will see, the Eq. (1.2) admits 16 + oo infinitesimal generators. The classi-
cal solutions are recovered with the use of non-generic symmetries to construct similar
solutions. Further solutions, both polynomial and non-polynomial, are constructed by
using the invariant of the Lie point symmetries as seed solutions and the property of
mapping solutions into solutions. These solutions are analogous to the well-known wave
polynomials.

The paper is outlined in three sections, including a conclusion. Lie point symmetries
of the Eq. (1.2) including the invariant for finding the similarity solution are given in
the second section. Then, we applied the Lie bracket of the symmetries to find some new
solutions from the old solutions in the third section. Finally, some special solutions are

plotted at the end of this section.

2. LIE SYMMETRIES OF THE EqQ. (1.2)

The method of finding symmetries of differential equations is a routine and standard
procedure. There are still many authors using this method to find the exact solutions
[1, 6, 16, 17] of non-linear differential equations. The general procedure to obtain Lie
symmetries of differential equations, and their applications for finding analytic solutions
of the equations are described in detail in several monographs on the subject (e.g. [2, 3, 8])

and in numerous papers in the literature (e.g. [4, 6, 13, 14, 15, 16, 18]). Recently, the
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extended Lie symmetry method to fractional differential equations is far interesting and
is used in so many articles [5, 12, 19, 20].
The Lie algebra of infinitesimal symmetries is the set of vector fields in the form of

(2.1) X =& +£Qa+€3a+€4a+¢g

Applying the second prolongation of the vector field (2.1) on (1.2) yields a sixteen dimen-

sional Lie algebra of symmetries spanned by the following infinitesimal generators:

0 0 0 0 0 0
-2 x-2 x=-2 x-=-2 x-1+L4+,°2
oy 2= 52 ST S o "=ty PV
g 8 9, 9, 8 0 0 9,
8 8 0 9, 8 0
Xo= ot~y Xp—at — 2L X, =y L 22
’ Z@y 0z’ 0= 25 " Yoz =Y xay’
X12_$Z017+y28y+1/2(2 +t°—a" —y az+tzat uzg
X—xa+za+1( i 2y ?
B o T e T Y 0= or ~ "Youw

d o 1 ) 5,
X14:xta—+tya + = (z +t2+ 2t +y?) = tlzg —utss

0 0 1 0 0 0

S < NN o0 ST B B A o N o o

X5 asyay .rzaz+2(z t m+y)ax t:vat—l—uxau,
0
X — _
16 u@u

including a pseudo Lie algebra spanned by the vector field

0
Xoo = a(xayvzat)a_a
u

where « (x,y, z,t) is a solution of Eq. (1.2).

The structure of the Lie algebra of the symmetries is coming from their origination.
Both operators X4 and X, together, is a feature of linear evolution equation and those
non-linear evolution equation which can be linearized by means of a point transformation.
For a linear evolution equation the function, a(zx,y, z,t), is a solution of the equation itself
as is the case of the wave Eq. (1.2).

An important preponderance of symmetry group method is to construct new solutions
from known solutions. To do this, the infinitesimals are considered and their corresponding

invariants should be determined. This is a standard method to be found in many texts.
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But, readers are reminded that X;4 and X, do not provide similarity solutions. As
a reminder, some examples about the method of constructing similarity solutions are
provided here.

For example, the associated Lagrange’s system for X; is

where € is a parameter.

The solution of the system (2.2) yields invariants z, z,t and v = ¢(t,x, z). Inserting

these new variables to Eq. (1.2), concludes that

(23> 9t — Gzz — G2z = 0.

The Eq. (2.3) has two different solutions, polynomial type
(2.4) g(t,z, 2) = t* 4+ 227 — 22

and

12 — 2 2

(2.5) g(t,x, z) = arctan 5 ,

x
as a non-polynomial solution.
For the other example, the Lagrange’s system for X is

dzx dz @_dt_du_o

(26) ETT RSN kT A

Integrating the system (2.6) gives the invariants y,t,r = 22 + 2% and u = g(y,t,7).

Substituting these invariants to Eq. (1.2) gives the following reduced equation

(27) —47“grr + Gu — Gyy — 497" = 07

including two solutions

(28> g(?“,y,t) = tz - y2 +7,

and

(2.9) (sz)—lnt_m
. g ) - t+[l§'

The proceduer is the same for other symmetries. Results are summarized in Table 1 and
2.
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As it is well known that the most important property of symmetries is that they map
solutions to solutions. Linear PDEs have an infinite number of solutions and under quite
general conditions an admitted symmetry is fiber preserving. To construct the solution
one uses the property that the Lie bracket of X;,i = 1,...,15 with X, makes another
member of the class of symmetries of the form of X, . This provide a route to the
generation of new and non-trivial solutions from trivial similarity solutions such as are
associated with X;,7 = 1,...,11. It is noteworthy that X5, X135, X714 and X5 do not give
desired solutions. The structure of the new solutions from the property of the Lie bracket
with the solution symmetry summarized in Table 3.

For example other solutions could be obtained from the seed solution a(x,y,z,t) =
t2 4+ 2X?% — 2?2 by X, that is 0, or by X, that are 2z, 2 and 0, by X5 that are 2"ty,
2"~ 1(#? 4+ y?) and etc. These results also summarized in Table 4, 5, 6 and 7.

3. NON-POLYNOMIAL SOLUTIONS

The seed solutions of X; is a base for constructing non-polynomial solutions of wave

equation. For example for non-polynomial solution (2.9) by X; and X5 is 0 and by X3

are
o’ (z,y, 2,t) = %.
Similarly, X4 provides the solutions:
o?(x,y, z,t) = W

Observation outcomes is expressed in Table 9. We can also run this process for other
non-polynpmial solutions in the last column of the Table 2 to obtain a number of solutions

for wave equation. These results are coming in Tables 10 to 18.
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4. CONCLUSION

In this paper, by using the Lie symmetry analysis, the symmetry properties and sim-
ilarity reduction forms of the (3+1)-dimensional linear wave Eq. (1.2) were studied.
Moreover, polynomial and non-polynomial solutions of Eq. (1.2) are computed by virtue
of this fact, that symmetries and their Lie brackets map solutions to solutions. The
method is applicable for any other differential equations which admits symmetries such

as X.
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TABLE 1. Invariants and the solution set for the symmetry X;,7 =1,...,15
Symmetry Invariant transformations Reduced equations
Xy g=z,p=zr=tg=u 9rr = 9qg = Gpp = 0
X q=x,p=y,r=tg=u Grr — 9qqa — 9pp = 0
X3 qQ=x,p=yY,r=29=1u —Y94q = 9pp — 9rr =0
Xy g=y,p=zr=tg=u 9rr = 9ag = 9pp =0
X5 g=z,p=zr=t>—y’ . g=u 4rgrr +4Gr — Ggq — gpp = 0
Xs g=z,p=y,r=—-t2+229g=u —4rgrr —49r — Gqq — 9pp =0
X7 g=y,p=zr=t"—1*g=u 4rgrr + 49y — Ggq — Gpp = 0
X3 ngangarzzvg_u (q2+1)9qq+(p2+1)gpp+(r2+1)grr
+20pqPq + 29qrqr + 29pr07 + 2944
+2gpp + 29,7 =0
Xy g=z,p=t,r=224+vy*g=u —4Grr7 + Gpp — Ygq — 49r = 0
X10 g=y,p=t,r=a>+2*g=u ~4Grr7 + Gpp — Gag — 49 = 0
X1 q=zp=tr= x22+ yzz,g = —49rer = gag + 9pp — 49 =0
X2 qzi,pzﬁ,r:_t +x;y Ry 32__1T3 <q2+;>gqq+<p2_;)gpp
g =au\/z +9arqr + ot + T2+ 2g,q
) , ) ) +gpqpq2+ 2gpp + 29,7 +29 =0
Xig  g=Zp=tr=— H";y = 32__1r3 <q2+;>gqq+<g—;>gpp
g =ru\/T +9qrar + Gprpr + gr;ﬁ + 2949
s e e +gpqpq2+ 29pp + 2907 +29 =0
Xu  q=tp=ir="""1 ;y . 32__1T3<(12+;>gqq+<]92—;>gpp
g = zu\/z +9qrqr + gprpr + % + 2949
s e +gpqpq2+ 29pp + 29,7 +29 =0
Xis5 ng’Pziﬂ":_t —f—xy—i—y —1—27 32_—1r3 <q2+;)9qq+(];_;)9pp
g = zuy/ +9qrqr + gprpr + % + 2944

+9pgPq + 29pp + 29,7 +g =0
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TABLE 2. Invariants and the solution set for the symmetry X;, i =1,...,11

Symmetry  Invariants  Polynomial solutions Non-polynomial solutions
X1 £, 2, u t? + 22% — 22 arctan\/ﬁffg#
X by, u t2+ 22% —y? arctan tz_g;#
X3 LY,z u 2?4+ y? — 227 arctanh\/W =
X by, zu 28 + 4 + 22 arctan t2*i§*22
Xs 2, =yt w2 a4t — P arctan
Xs =2y, ru P2yt -2 arctan
X7 y, 2,02 =2 u PP -t 2P arctan’

Xg yzt . ,

' r’x
Xy ot + 2t Rt 2 — a2 ln;:—i
X ybhat+2u -yt a4t In 772
Xy tza®+yiu -4t In ==

125
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TABLE 3. Structure of the new solutions generated by the Lie bracket

[Xi, Xoo] New Symmetry New Solutions
[Xl’ XOO] 8%Oyld dau Opew = 8(;721(1
[XQ’ Xoo] 6%7?15% Qnew = agizld
X X 8a°1d @ — aaold
[ 3 OO] ot OJu Onew Ot
X4 X dagg 8 Oaold
[ 4 oo] or Ju Onew o
(X5, Xoo] 8010101 + Baold 0 o — +9%l1d + dagld
5y <Aoo Yy ou new — dy Y=o
XX (o) g o — 1003 0
[X77 XOO] ( af +x 8f) dau Onew = taaold 4+ 80401(1
[X&Xoo] ( 8a01d + yaaold + Zaaold Onew = 8cxold + yaaold + zaaold
G ) o il
[X107X00] (Zaf yajzt) % Opew = Z% - 8?921(1
[X11, Xoo] zgic — x‘gﬁ 2 ey = 22804 _ 00010
[X127 XOO] ygi B Iggjj % Onew = yag;’cld — LUL%;M
[X13, XOO] (Zf + xzaf + Yz, Bf Onew = 2f + xzagigd + yzaggd
12 2 2 4 232 24,
+ :I/' 2 y Z 8f + t af) au + x 2 y 8aold + tzaaold
[X147 Xoo] (Z/f + xyaf + yzaf Qnew = Yf + ggya%ld + gz 990ld 8a01d
2 . 2 o B 2
— a4 y? - 22 8f+t f)% z? J;y 8a01d +tz<9aold
[X15, Xoo] gtf +tx 8f +tyg, f Opew = Lf + txaaold + tyag"]d
12 2
n + 2% 4 y? + 22 8f+t o + 22 +y? + 22 aaold_l_tzaaold

2

%)

ou

2
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TABLE 4. Classification of exact polynomial solutions for wave equation

Qoq = 2 + 222 — 22

aoq = t2 + 22% — y?

Onew = 0
Onew = —22
Opew = 2t
Opew = 4

n o 92n—lyy 92n=1(y2 4 42)
Opew = 0
Apew = 3(2")ty, 3(2")(1* + ¢?)
new = 2M(20% +y? — 2%), 4" (42 + y® — 2°)
O = (=1)" 1 (2M)yz, (=1)"(2" ) (y? - 2?)

new

al

Ol = (—1)" 132"z, (~1)"13(27) (a2 — 22)
Ol = (~1)P= Dy, (~1)747 (22 — y?)
Opew = 2212 4+ 7222 + y2z — 223
Onew = 3t2y + 622y — 3yz2
Onew = 2t3 + Tta? + ty? — 2t22
Onew = — (5xt? + 423 — 2xy? — 522?)

Onew = 2Y
Onew = 0
Opew = 2t
Onew = 4
Opew = 0

., = (2)"tz, 2" (12 + 22?)
(2™)tx, 3(2") (£ + x2)

e =3
= 2" (12 + 222 — y?), 47 (12 + 222 — y?)
U = (=1)"H(2")yz, (—1)”(22” D =22
O = (=2)" 1oz, (-2)" 1 (a? - 2?)

o= (=) Dgngy, (—1)m47 (22 — 22)
Onew = 3(t22 + 2222 — y%2)
Qnew = 262y + T2y — 21 + y22
Onew = 23 + Ttz — 2ty2 + t22
—(5t2x + 423 — bay? — 222?)

Qnew =
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TABLE 5. Classification of exact polynomial solutions for wave equation

olq = 2% + y? — 227

od = 267 + y? + 27

Onew = 2y
Qnew = —42
Onew = 0
Qnew = 2T

Oew=(2)"ty, 2" (2 + y)

e =—(4)"tz, —(4)" 1 (* + 2%)

s, = (2)"tz, 271 (#2 + 2?)

O‘gew = Qn(xQ + y2 - 222)

Oew = 2y
Qnew = 2%
Onew = 4t
Qpew = 0

Oy = 3(27)yt, 3(2" 1) (y* + 17)
s, =3(2")tz, 3(2" 1) (12 4 22)
., = (4)"tx, 4" (2 + 2?)
Ul = 27 (267 + 42 + 2°)

O[gew: (_1)n—13(2n)yz, (_1)n—13(2n—1)<y2 - ZQ) Qnew = 0
Aoy =(=1)"713(2") 2, (=1)" 132" (2% = 2%)  afl, = (=1)"(2)"xz, (=1)"(2)" (2? - 2?)
A Oy = (~1)"(2)" 2y, (~1)"7 (2" (a2 — y?)

Onew = —(22t% — 5222 — 5y%2 + 423)
Qnew = 12y + 222y + 23 — Ty2?
Qnew = 3tz? + 3ty? — 62>
Qnew = — (22 + 223 + 229% — Tw2?)

Opew = T2z — 22?2 + 2zy2 + 223
Onew = T2y — 2%y + 2> + 2y2°
Qpew = 483 + 2ta? + 5ty? + 5tz
Onew = — (6122 + 3292 + 3122)




EXACT SOLUTIONS OF (341)-DIMENSIONAL WAVE EQUATION

TABLE 6. Classification of exact polynomial solutions for wave equation

aoq = 22+ 22 4+ 12 — o2

aoq =t + 2% +y? — 27

Onew= —2Y
Onew=2%2
Opew= 2t
Onew= 2T
Onew=0
Ui = (47)ty, 4" (82 + 2%)
e =(4")tz, (4)"H(t? + 2?)
=27 (12 + 2% — % + 222)
o= (=1)"(4")y2, (4)"H(y* = 2%)
Onew=0
o= (=1)"(4")yz, (4)" " (2? = y?)
Qpew= 4t?z + 2222 — 4y2z + 223
Onew= 2t%y + 4y — 23 + 4y2°
Onew= 2t3 — 4ta? — 2ty? + 4t2>
—(4t%z + 223 — dxy? + 222°)

Qnew =

Onew = 2y
Opew = —22
Qnew = 2t
Olpew = 2T
e = (4")ty, (A1) (¢ +¢?)
Qpew = 0

aly, = 4%xt, A" (12 + 2?)
= 2"(t2 + 2% + 292 — 2?)
Uew = (=1)"H(4)"yz, (—4)" " (y? — 2%)
e = (1)1 (4) 2z, (—4)" 1 (2* — 2°)

Onew = 0

Opew = 2622 + 422z + 4y22 — 223
Onew = 482y + 222y + 293 — 4y 22
Onew = 2t3 + 4tz? — 4ty? — 2t2°
—(4t%z + 223 + 22y® — 422?)

Qnew =

129
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TABLE 7. Classification of exact polynomial solutions for wave equation

aold = y> +1° — 2 + 2°

Qo = Y2 + 2% + 2% — 12
Onew= 2y Qnew = 2y
Onew=22 Onew = 272
Onew= 2t Qpew = —2t
Onew= —2T Onew = 2T
e =(4)"ty, (4" 1) (t* +y?) Onew = 0
hew=(4)"tz, (4" 1) (#* + 2%) Onew = 0
Onew=0 Onew = 0
Oty =2 (8% — 2% + y* + 227) e = 2" (2 4+ 22 + 32 + 2%)
Qnew= 0 Qnew =0
ey = (—4)"22, (—4)" 1 (2 = 2%) Onew = 0
Ao = (—4) 2y, (—4)" (2% — y? Onew =0
Onew = 4122 — 4x%2 + 2y%2 + 223 Onew = —(2t%2 — 2222 — 29?2 — 223
Onew = 4t%y — 422y + 293 + 222

Qpew = 263 — 2tx? + 4ty2 + 4t 22

Qnew = —

(2622 — 223 + day? + 4az?)

Qnew = _(2t2y - 2$2y - 293 - 2y2’2)

Qpew = — (2% — 2ta? — 2ty? — 2t22)
Qpew = 2622 — 223 — 293y2 — 222
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TABLE 8. Classification of exact polynomial solutions for wave equation
Qg = —42 + 22 + 22 + 2 g = % — 22 + 22 + 2
Opew= —2Y Qnew = 2y
Onew=22 Qnew = —22
Qpew= 2t Qpew = 2t
Qpew= 2T Qpew = 2T
Onew=0 agew = (4)ntya (4n71)(t2 + y2)
Apow=(4)"tz, (4771 (8> + 22) Omew = 0

Qnew=(4)"tz, (4"~ 1) (12 + 2?)
anl . =2"(t2 + 2% — y? + 22?)
aﬁewz (_4)nyz, (_1)n(4)n—1(y2 - 22)
Opew = 0
(=) @)y, (1) (=4)" " (2? — y?)
Qpew = 4t22 + 2222 — 4y2z + 223

Onew = 2%y + 422y — 23 + 4y 2>
Onew = 2t3 + 4ta? — 2ty? + 4t2?
—(4t%z + 223 — dxy? + 222°)

Qnew =

s, = (4)"tx, (47N (2 + 2?)
a’ = 2n(t2 4 1132 + y2 _ 22)
4)"yz, ()" (=) P - 22)
4)"1‘,2, (_1)n—1(_4 n_l(fL‘Z _ 22)

Onew =0

)
)

Onew = 2022 — 42?2 + 4y?2 — 223
Onew = 482y + 222y + 2y3 — 4y 22
Opew = 2t° + 4tx? + 4ty2 — 2t22
— (4822 + 223 + 2zy? — 422?)

Qnew =
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TABLE 9. Classification of exact non-polynomial solutions for wave equation

12— 2 — 22
X, Qg = arctan \/ s E—
T
X4 Opew= 0
z
Xs Opew = 5 5 5
t“-—x z
2 (t2 - 22)
(t* — 29 + t2€2 — 2222 — 224)
12— 232
(82 — 22 — 22)(£2 — y2)2 >
t
X3 Qpew 222
. (t2 _ 2,2)2
x
(2t* — t?2? — 1222
(12— 22 — [t — x — 22
Xy Opew =

2 — 22 — 22)

\/ﬁ
\/ﬁ

X5 Qpew =
[ 2 —a: — 22 2)
—z
X6 Opew= 0
t2 - — 22
X7 Onew = y
o2 — 22) — :c — 22
(t* — 222 — 2222 — 24
[ 12 —a: — 22
X3 Qnew = 0
yz
X Olpew= § ; R etc
(t2 22) t°—x° — 2
2
2(t2 — 22 — 22
X10 Opew = ( ) s
) ) 2 _ 22 _ 2
x(t?2 — z
2
T
(t* — 222 — 2222 — 2%)
5 5 5 ,ete
t x°—z
t2 _ 22
) %2
X1 Qpew =
2 22 2 ’
T
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TABLE 10. Classification of exact non-polynomial solutions for wave equation

X

2 22 y2
Qg = arctan s E—

X1

Xy

Xy

X1

T
Onew = — 2 5 Y 5
YT Y e 9
72 (t -y )
(t4 t2x2 + t2y2 _ x2y2 _ 224)
222 yz ’
2 2 2\ (42 2\2
(t? — 22 —y?)(t* — y?) -~
Opew= 0
t
Qpew =
2 _ 2 _ y2
@ - g)
(2t4 _ t2$2 t2y2 y4)
2 2 2
992 a2l T Y
(t? — 22 — y?)(t* — y?) 2
1
Opew= 5
t2 2,2
T v y
%
1
I yQ ete
(2 — 22— ) ;
T
Onew= 0
t
Onew = : , ete
2 _ 22 _ y2
(t2 - y2) 72
N B t(t2 _ y2 _ $2)
new — bl
2 _ 22 _ y2
'r(tQ - yg) $2
202 22 g h
( x ;U y : ) cte
" —x —y
12 212
y?) =
Opew=0
z
Qnew = y2 5 = etc
(t2— 2) t —xQ—y
T
ety
new— bl
2 _ 22 _ y2
2 2
:E(t -y ) 72
(t* — 222 — 2222 — 24)
5 5 5 ,ete
t“ —x Y
12 2)2
y?) =~
P Y
new — b
2 _ 22 _ 2
T 5 Y
(t2 _ $2 _ y2 _sz)
5 etc
-y

133
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TABLE 11. Classification of exact non-polynomial solutions for wave equation

X; Qold = arctanh\/ a:2+y72+22
7 T
X1 Qnew = 2 y2 n e
S
(22y? — 2222 + 2y* + 22?2 — 24

(2 + 2 + 22)(y? + 22) \/m +y s
Xo Onew= e
2?4+ %+ 22

V)

(22y? — 2222 + 9t — 222 — 224)

2
(a2 + 92 + 22)(y2 + 22| +y 2

X3 Anew = O

Xy Qnew=
|22 +y + 22
2 4+ y? + 22) \/x +y +2°
X5 Qnew = 2
(2 + 22) /T +y + 22
X6 Qnew =
(W2 + 22) [ 22 +y + 22

X7 Qnew =

x? —|—y + 22
ng2
— z? fy — 22

Onew =" 2
(02 92+ 22) | L T2 +y 2

X3 Opew=0
X9 Onew=0
z(z? +y? + 22

X10 Qnew = 2 n n
x(y? + 22) \/ y 2

(y—xz—l—y

y+z2 /T —.%' —Z

a:—i—y—i—z

X1 Onew = + n
y +z2 \/ y 2

(?

[t2 —x — 22
(Y2 + 22)2
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TABLE 12. Classification of exact non-polynomial solutions for wave equation

t2 2 22
X; Qg = arctan \/ y72
z
X3 Onew = Y
22 _ 2
yg : (t2 - yQ)
B (t4 + t2y2 _ t222 _ 2y4 _ y222)
2 2 2
rr+y +z
(22 + 2 + 22)(£2 — y2)24/ 92
X
1
Xa Qpew = 2 y2 — 2 s
z 1722
PRI etc
(12 — g2 — 2y [ — L=
z
X _ t
3 Onew = t2 — y2 — 22
2 _ .2
T(t y?)
B (2t4 o t2y2 _ t22'2 o y4 o y2z2)
t2 o y2 o 22
(@ 4+ ) -y
X4 Onew=
X5 Onew = 0
t t2 .2 22
X6 Qpew= — ( Y 5 2) 5
a2 — g2 [ L2 22
252
(14— 1222 — yt = 4222) e
t? — y2 — 2
(t? —y?) 5
xt *
X7 Onew= , etc
) ) t2 _ yQ . 22
(t* —y?) s
X3 Opew=0
t2 2 22
X9 Qnew = y( y2 2) 5
(2 - g2 | L2
Z
(4 — 1222 — gt — 42%) e
£2 yz _ 2’
(t2 - y2) 2
z
e
X10 Qnew = 5 5 5
; t“ —y* —z
2
(t2 _ ZE’Q .2 _Z 2
Y —z°) ;
R ,etc
(2~ g — 2,
z
X
X11 Onew Y , etc
t2 2 252
2 _ .2 Yy
(t* —y?) =
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TABLE 13. Classification of exact non-polynomial solutions for wave equation

X; Qpld = arctan z
T
X1 Onew= 0
o (n—=1la(a? — 3222
X2 Apow— (332 T zz)” )
n!zz($2—z2)%—1
X3 Onew= 0
n o (n—=1)1z(32% — 222
X4 Apow— " ($2 T 22)n ;
n!zz(m2—z2)%—1
X5 Onew=0
tx rz2(2t? — 2% — 2?)
X6 anew:xz T 52 — (.%'2 T 22)2 etc
 —tz mz(2? —2? - 2?)
X1 Gnew= 20 (22 + 22)? ete
X3 Opew= 0
2 2 2
—yx rz(2y* +x° 4 2
X9 Olnew = ) 20 ( 2 BIV) ),etc
%+ z (22 + 22)
X10 Qpew= —1,0
—yz w22yt 4 2? + 2
Xll O[new_x2 + 227 ($2 + 22)2 7etC
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TABLE 14. Classification of exact non-polynomial solutions for wave equation

X; Qolq = arctan £
—1)! 2 3 2\n—2
Y| e O DEGESTE
(.’L’2 + yQ)n
_n!my(zZ—gf)%—l
(x2+y2)n
X2 Opew = 0
X3 Onew= 0
X 0 (n — Dly(3z* —y*)" >
4 Qpew™=" (.%’2 n y2)n ;
n!xz(a:2fy2)%fl
(x2+y(2)"2 2 2)
tr Y2t —x° —y
X5 | Qpew= ,— etc
5 neWT 02 4 g2 (22 + 42)2
Xe Onew=0
—ty  xy(2t? — 2% —y?)
X new— ) ,ete
T GmewTia 2 (22 + 42)2
X3 Onew= 0
—yx ry(2y? + 2% + 22)
X new = ,— etc
9 | ¥new 22+ o2 (@2 + 42)2
X10 Opew= 0
2 2 2
—yz  ay(y” +a° +227%)
X Qnew= , ,ete
11 neWT 22 4 2 (22 1 12)2
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TABLE 15. Classification of exact non-polynomial solutions for wave equation

X; Qold = arctan§
W (n—1)z(3y% — 2%)" 2
Xl AOpew™— (y2 T 22)” )
_n!yz(yQ—z2)%—1
(y2+22)n
X n (77, — 1)'y(y2 — 3Z2)n_2
2 Qpew=" (yg +22)n )
n'xy(xQ—ZQ)%—l
(x2+y2)n
X3 Onew= 0
X4 Onew = 0
—tz yz(2t2 — 9% — 2?)
X - et
5 | Omew="5 npwl (22 1 42)2 ete
x ty yz(2t2 — 2% — 2?%) .
Onew = ) ,etc
6 VT2 g2 (22 + 42)2
X7 Opew = 0
X3 Opew= 0
X9 Opew= —1,0
—yr  yz(2z? + 9% + 22)
XlO new £B2 + y2 (.CC2 + y2)2 ,etC
x Yz 2y (222 + 22 + y?) ote
11 new 2 +y2 (x2 +y2)2 Y
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TABLE 16. Classification of exact non-polynomial solutions for wave equation

Xi old = In =2
X1 Opew= 0
Xo Opew= 0
w2027 (3% + a?)n 2
X3 Cpew™ (t2 _ xQ)n )
2n!t:v(t2+a:2)%—1
N GE
x . 2(2)" 1t (322 + )2
4 new— (2 — 22)n )
2n!xt(12+t2)%71
W
2wy 2tx(t? — 2? — 2y7)
X5 anew—t2 _ x2’ (t2 _ x2)2 7etC
_ 2xz 2ta(t? — 2? — 22%)
Xe anew—tQ — 2 (t2 — .%'2)2 ,ete
X7 Onew= —2,0
Xs Onew=0
Xy Onew=0
2tz 2tx(t? — 2% — 22?)
XlO anew:t2 — 127 (t2 — .Z'2)2 ,etc
—2ty 2tx(t® — 2% + 2y°
X11 | Onew= Y ( Y ),etc

t2 _ .%'2’ (t2 _ .’E2)2
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TABLE 17. Classification of exact non-polynomial solutions for wave equation

X Qold = In L%Z
¥ L 22" T (3tE 4 2?2
al = ,
1 new (t2 _ gZ)n
2nlty(t2+22)2 —1
BRGERE
X2 Opew = 0
x w2027 e (t? + 3a?)n 2
« =
3 new (t2 _ gZ)n
2nlty(t2+22)2 -1
X4 Oénew:0
X5 Onew =0
2yz  2ty(t? — y? — 222)
X6 | Onew= ) ,ete
€ 2 — yQ (t2 _ y2)2
X 2zy  2ty(t? — 222 —y?) .
Qpew= , ,ete
7 VTR g2 (12 — 42)2
Xs Onew =0
2tz 2y(t? —y? — 22?)
X9 | Gnew= , ete
€ 2 — y2 (t2 _ y2)2
Xio Opew=0
2t 2ty(t? — 222 — y?)
X w= , ,ete
11| Onew= 35— 2 (2 — 2)?
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TABLE 18. Classification of exact non-polynomial solutions for wave equation

X aold = In 2
X3 Onew= 0
X W 202 + 3272
2 Onew="" (2 — 22 )
2n!tz(t2+z2)%fl
N CGEI
w202 22 + 32?)n 2
X3 Qpew=—" (t2 — 22)n )
2n!tz(t2+932)%—1
ENCGE
X4 anewzo
2uz  2tz(t? — 2y% — 2?)
X5 aneW:t2 _ [L’2’ (t2 _ 22)2 ,etC
Xe Opew= —2,0
2rz  2tz(t? — 222 — 2?)
X7 aHeW:tz o 22) (t2 o 22)2 ,etC
X3 Onew=0
—2ty  2tz(t? — 2y% — 2?)
X9 aneW:tQ — 22’ (tQ _ 22)2 ,etc
2z 2t2(t? — 227 — 2?)
XlO anew_tz — 227 (t2 — 22)2 7etC
X11 Onew=0
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