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Abstract. In this note, we prove a monotonicity result related to the principal eigen-

value for Dirichlet-Laplacian with a drift operator in a punctured ball.

1. Introduction

Let B be the unit ball in Rn centered at the origin, Bh is the ball centered at (h, 0) ∈
R×Rn−1 with radius r < 1 and Dh := B \Bh, 0 ≤ h ≤ 1− r. Here E denotes the clouser

of the set E ⊂ Rn. Let L := ∆ + x · ∇ be the Laplace operator with a drift. We consider

the following eigenvalue problem{
−Lu(x) = λu(x) for x ∈ Dh,

u(x) = 0 for x ∈ ∂Dh,
(1.1)

or equivalently in the weighted eigenvalue problem −∇ ·
(
e|x|

2/2∇u(x)
)

= λe|x|
2/2u(x) for x ∈ Dh,

u(x) = 0 for x ∈ ∂Dh.
(1.2)

We say (λ, u) ∈ R×H1
0 (Dh) is an eigenpair for the problem (1.1) whenever

(1.3)

∫
Dh

e|x|
2/2∇u · ∇v dx = λ

∫
Dh

e|x|
2/2uv dx,
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for all v ∈ H1
0 (Dh). The real number λ is eigenvalue and the function u is called an

eigenfunction associated to it.

One of the physical phenomena of the problem (1.1) is the vibration of an elastic

membrane. Assume that Dh is a planar region occupied by an elastic membrane fixed

around the boundary. It is well-known that natural frequencies of the membrane are

related to the eigenvalues λ.

Let

Wh :=

{
w ∈ H1

0 (Dh) :

∫
Dh

e|x|
2/2w2(x) dx = 1

}
.

The principal (first) eigenvalue of (1.1) is

λ1(h) = inf

{∫
Dh

e|x|
2/2|∇w(x)|2 dx : w ∈ Wh

}
.

It is weel-known that the minimum is attained. Let uh ∈ Wh be a minimizer. Since |uh| is
a minimizer as well, we can assume that uh is non-negative in Dh. By a strong maximum

principle we find that uh is positive in Dh. Also, It is unique up to a constant factor of

itself (see [6, 1, 9] for more details). In this note, we show that λ1(h) is decreasing in

0 ≤ h ≤ 1 − r. To do this end, we use the shape derivative, see [11, 12, 3, 2, 4, 8], and

deduce that

λ̇1(h) = −
∫
∂Dh

e|x|
2/2(

∂uh
∂ν

)2ν1 dS,

where λ̇1(h) denotes the derivative of λ1 with respect to h, ν stands for unit outward

normal on ∂Dh and ν1 is the first component of ν. Then by the Walter’s maximum

principle [13, Theorem 2] we prove that λ̇1(h) ≤ 0 for 0 ≤ h ≤ 1− r. Note that we unable

to show the strict monotonicity.

If L = ∆ in (1.1), this result has been proved by Ashbaugh and Chatelain (personal

communication, 2012), Harrell et al. [5], Kesavan [7], and Ramm and Shivakumar [10]. In

[3], we tried to extend the result of Ramm and Shivakumar [10] for Dirichlet p-Laplacian

eigenvalue problem but we were able to do that for weighted eigenvalue problem with a

sign changing weight. Finally, Chorwadwala and Mahadevan [2] extend it. However, they

were also unable to conclude the strict monotonicity.

2. Main result

The main result of the paper is the following
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Theorem 2.1. Assume (λ1(h), uh) ∈ R+×Wh be the principal eigenpair of the eigenvalue

problem (1.1). If uh ∈ C2(Dh) ∩ C(Dh) then λ1(h) is decreasing for 0 ≤ h ≤ 1− r.

Proof. We use the shape derivative. Let u̇h := duh
dh

and λ̇1(h) := dλ1
dh

. We have{
−∇ · (e|x|2/2∇u̇h(x)) = e|x|

2/2(λ̇1(h)uh(x) + λ1(h)u̇h(x)) for x ∈ Dh,

u̇h(x) = −∂uh
∂ν

(x)ν1(x) for x ∈ ∂Dh,
(2.1)

where the boundary equation in (2.1) follows directly from [11, Theorem 3.2].

By multiply the differential equations in (1.2) and (2.1) by u̇h and uh respectively, and

integrate the results over Dh we infer that

(2.2)

∫
Dh

e|x|
2/2∇uh · ∇u̇h dx+

∫
∂Dh

e|x|
2/2(

∂uh
∂ν

)2ν1 dS = λ1(h)

∫
Dh

e|x|
2/2uhu̇h dx,

and

(2.3)

∫
Dh

e|x|
2/2∇uh · ∇u̇h dx = λ1(h)

∫
Dh

e|x|
2/2uhu̇h dx+ λ̇1(h)

∫
Dh

e|x|
2/2u2h dx.

Since uh ∈ Wh by subtracting (2.2) and (2.3) we deduce

(2.4) λ̇1(h) = −
∫
∂Dh

e|x|
2/2(

∂uh
∂ν

)2ν1 dS.

By symmetry we have∫
∂B+

e|x|
2/2(

∂uh
∂ν

)2ν1(x) dS = −
∫
∂B−

e|x|
2/2(

∂uh
∂ν

)2ν1(x) dS,

where ∂B+ := {x ∈ ∂B : x1 ≥ 0} and ∂B− := {x ∈ ∂B : x1 ≤ 0}. Therefore

λ̇1(h) = −
∫
∂Bh

e|x|
2/2(

∂uh
∂ν

)2ν1 dS.

It’s clear by symmetry that λ̇1(0) = 0. We show that λ̇1(h) ≤ 0 for 0 ≤ h ≤ 1 − r. To

do this, we shift the coordinate axes so that the hyperplane l = {x ∈ Rn : x1 = 0} passes

through the center of Bh. Now, let A := {x ∈ Dh : x1 > 0} and A∗ be the image of it

with respect to l. Also, let ∂B+
h := {x ∈ ∂Bh : x1 ≥ 0} and ∂B−h := {x ∈ ∂Bh : x1 ≤ 0}.

We define the function

v(x) =

{
uh(x) if x ∈ A,
uh(xl) if x ∈ A∗,

(2.5)
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where xl is the reflection of x with respect to l. For x ∈ A∗, since |x| = |xl| we have

−∇ · (e|x|2/2∇v(x)) = −∇ · (e|xl|2/2∇uh(xl))

= λ1(h)uh(xl)e
|xl|2/2

= λ1(h)v(x)e|x|
2/2.(2.6)

Let w := uh − v. From (2.6) and (1.2) we have

(2.7) Lw + λ1(h)w = 0 in A∗, w ≥ 0 on ∂A∗,

and

(2.8) Lv + λ1(h)v = 0 and v > 0 in A∗.

Therefore, since uh ∈ C2(Dh)∩C(Dh), by the Walter’s maximum principle [13, Theorem

2] we deduce either w = βv in A∗ for some β < 0 or w ≥ 0 in A∗. Assume w = βv in A∗.

Let x ∈ ∂A∩∂B+ be fixed. So there exists a sequence {x(k)} ⊂ A such that |x(k)−x| → 0

as k →∞. From uh ∈ C(Dh), we infer that

0 < uh(xl) = lim
k→∞

uh(x
(k)
l ) = lim

k→∞

(
w(x

(k)
l ) + v(x

(k)
l )
)

= (β + 1)v(xl) = 0.

This is a contradiction. Hence w ≥ 0 in A∗. Thus uh ≥ v in A∗. Since uh = v = 0 on

∂B−h , for z ∈ ∂B−h we obtain

∂

∂ν
(uh − v)(z) = lim

t→0−

(uh − v)(z + tν)− (uh − v)(z)

t
≤ 0.

Thus ∂uh
∂ν
≤ ∂v

∂ν
on ∂B−h . Since ∂v

∂ν
≤ 0 on ∂B−h , we infer that

(2.9)

∣∣∣∣∂uh∂ν
∣∣∣∣ ≥ ∣∣∣∣∂v∂ν

∣∣∣∣ on ∂B−h .

Now from (2.9) we infer that∫
∂B−

h

e|x|
2/2(

∂uh
∂ν

(x))2ν1(x) dS ≥
∫
∂B−

h

e|x|
2/2(

∂v

∂ν
(x))2ν1(x) dS

=

∫
∂B−

h

e|xl|
2/2(

∂uh
∂ν

(xl))
2ν1(x) dS

=

∫
∂B+

h

e|x|
2/2(

∂uh
∂ν

(x))2ν1(xl) dS

= −
∫
∂B+

h

e|x|
2/2(

∂uh
∂ν

(x))2ν1(x) dS.
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Therefore λ̇1(h) ≤ 0. �

Conclusion

According to the numerical results in [10], it seems that, also in our problem, λ1 be

strictly decreasing, but for proving we will need probably a strong comparison principle

which conclude that ∣∣∣∣∂uh∂ν
∣∣∣∣ > ∣∣∣∣∂v∂ν

∣∣∣∣ ,
in a neighbourhood of ∂B−h ∩ A∗.
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