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Abstract. The study of clinical observations in the family planning of intensity-modulated

radiation therapy (IMRT), indicates that the target dose prescribed within the framework

of trapezoidal fuzzy numbers more closely matches the oncologist’s goals. In this study,

optimal treatment planning was described as a solution to an optimization problem using

a quadratic objective function, where the prescribed target dose is a trapezoidal fuzzy

number. First, the problem was transformed into a non-fuzzy optimization problem,

then the optimal solution was obtained based on the gradient method and projection

operations. In this paper, we used Computational Entertainment for Radiotherapy Re-

search (CERR) for treatment planning, importing the patient scans, and calculating the

influence matrix. Numerical simulation was performed for a head and neck cancer case.

Numerical results were presented in the form of Dose-Volume Histograms (DVH) and

compared with the deterministic state. These results showed that the treatment plan-

ning that we provided based on the trapezoidal fuzzy target dose, is more consistent with

the goals of oncologists.

1. Introduction

Intensity-modulated radiation therapy (IMRT) is a state-of-the-art technique for admin-

istering radiation to cancer patients. To achieve a terminal tumor dose, the surrounding
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critical organs are inevitably harmed. In this regard, the damaged healthy tissue in this

process would be carefully controlled.

Linear accelerator (LINAC) is the primary delivery tool for IMRT that rotates on a

gantry around the patient, emitting modulated beams of X-rays from a number of pre-

fixed angles. This modulation is accomplished by means of a device known as a multileaf

collimator (MLC). The MLC shapes the pattern of the outgoing radiation beam, in or-

der to precisely target the tumors while minimizing exposure of the neighboring healthy

tissues (see Figure 1).

Figure 1. left) A LINAC system; right) An MLC system.

It is necessary to determine that how the intensity of an X-ray beam should be at each

point (x, y) on the MLC aperture surface for all gantry angles. These fluence maps are

represented by nonnegative functions Ia(x, y) for a = 1, 2, . . . , k where k is the number of

gantry angles in use. Ia(x, y) Could be approximated by a set of discrete values Ia(xi, yi)

with discretizing the MLC aperture by nods (xi, yi); thus, one can show the unknown

beamlet intensity as Ia(xi, yi), a = 1, 2, . . . , k .

2. Dose-Volume Constraints

Radiation oncologists introduce, so-called, dose-volume constraints (DVCs), which spec-

ify a given percentage of volume for each critical organ that can be sacrificed, if necessary,

while the tumor gives a prescribed amount of radiation. The region of treatment is dis-

cretized into small three-dimensional rectangular elements, say voxels. If the absorbed

dose values is defined by the voxels with a vector d ∈ Rm
+ (m is the total number of voxels
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in the treatment region), in a standard IMRT model we have di =
∑n

j=1 aijxj in which aij

gives the dose absorbed by the i voxel per unit intensity emission from the j-th beamlet.

In this regard, matrix A = (aij) ∈ R(mt+mh)
+ nis called the influence matrix (mt and mh

are the number of targets and critical structure voxels, respectively); therefore, d = Ax.

Since calculating A is quite expensive, currently dose calculation is still considered an

important research area. Here, we assume that A is provided by CERR software (Deasy

2006). We remind that for each structure, there is at least one dose-volume constraint.

For example, in a sample prescription for lung cancer, the heart DVC specifies that no

more than 40 % of the voxels in the heart may exceed a 38 Gray dose.

For fluence optimization, several classes of optimization models have been proposed:

linear models (Fakharzadeh, Bozorg, et al. 2011; Cotrutz, Lahanas, et al. 2001), mixed

integer programming (Shepard, Ferris, et al. 1999; Sadegheih, Savari, et al. 2018), multi-

objective optimization models with Pareto solution (Breedveld, Storchi, et al. 2012;

Teichert, Currie, et.al. 2019; Ripsman, Rahimi, et al. 2023) and metaheuristic algorithm

(Webb, 1989; Freitas, Oliveira, et al. 2020; Fallahi, Mahnam, et al. 2022). Moreover,

recent attempts have been made to use artificial intelligence to solve these problems (see

Sevarajan, Manoharan, et al. 2022; Shitharth, Yonbawi, et al. 2023; Devarajan, Alex, et

al. 2022; Fu, Zhang, et al. 2021).

But in all such literature, variables, and parameters are considered as a certain kind;

even in the real world, many of them are fuzzy, like the prescribed target dose vector

parameter. Finding the best influence treatment map in such a situation precisely is our

main attention in this paper. The flowchart for IMRT treatment planning on a fuzzy

state is given in Figure 2.

3. Problem Formulation

Let Dv ⊂ Rm
+ be the set of dose vectors that satisfy all the dose-volume constraints for

a given problem and b̃t ∈ Rmt
+ be fuzzy prescribed target dose vector; also we assume that

the rows of A are organized such that AT = [ATt A
T
h ], where At is the submatrix consisting

of target voxel rows and likewise Ah is made up of healthy tissue voxel rows; then the
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Figure 2. Flowchart for IMRT treatment planning on a fuzzy state.

prescription set H and the physical set K are defined as:

H =

{[
b̃t

u

]
: u ∈ Dv

}
⊂ Rmt+m

+ , K =

{[
Atx

Ax+ s

]
: x, s ≥ 0

}
⊂ Rmt+m

+ .

Both H and K are closed sets in Rm
+ , and K is a convex cone; but H is non-convex

since the DVCs have a combinatorial nature (Ripsman, Rahimi, et al. 2023). In fact, Dv

is a non-convex union of convex boxes.

We would ideally like to find x ∈ Rn
+ and s ∈ Rm

+ that Atx = b̃t and Ax + s = u. But

the reality of the IMRT fluence problem is that there may be no physically achievable

dose that both satisfies the DVCs and meets the prescription. That is, generally speaking

dist(H,K) > 0, or equivalently, H ∩ K = φ; thus, the goal is to obtain dH ∈ Hand

dK ∈ Ksuch that:

(3.1) dist(H,K) = ‖dH − dK‖ = minu∈Dv minx,s≥0

∥∥∥∥∥
[
b̃t

u

]
−

[
Atx

Ax+ s

]∥∥∥∥∥ .
The norm in the right-hand side of 3.1 can be replaced by

(3.2) q(x, s, u) =
1

2
‖Atx− b̃t‖2 +

1

2
‖Ax+ s− u‖2;
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thus, one can define our objective function as

(3.3) f(u) = min
(x,s)≥0

q(x, s, u).

Now we represent the problem 3.1 with

(3.4) min
u∈Dv

f(u).

It is not difficult to show that f(u) decreases monotonically as u increases. Regardless

the fact that the parameter b̃t is fuzzy, there are many methods for solving 3.4; to use the

best one, we prefer first to de-fuzzify the problem.

4. De-fuzzify the problem

In order to solve 3.4 in a fuzzy environment, we need the following fuzzy concepts:

Definition 4.1. If the membership function of the fuzzy set Ã on R be

µÃ(x) =



(x− p)/(q − p), p ≤ x ≤ q;

1, q ≤ x ≤ r;

(s− x)/(s− r), r ≤ x ≤ s;

0, other,

where p < q < r < s, then Ã is called a trapezoidal fuzzy number. We denote Ã ≡
(p, q, r, s).

Definition 4.2. For each a, b ∈ R, signed distance of a fromb is defined by d∗(a, b) = a−b.
If a be in the right or the left of b, the sign of d∗ will be negative or positive respectively.

Also we have d∗(a, b) = d∗(a, 0)− d∗(b, 0).

Definition 4.3. For p < q and 0 < α ≤ 1 if the membership function of the fuzzy set

[pα, qα] on R be

(4.1) µ[pα,qα](x) =

α, p ≤ x ≤ q;

0, otherwise,

then [pα, qα] is called an α-level fuzzy interval. (See (Chiang 2001)).
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As a fuzzy number, b̃i specifies the maximum and minimum dose absorbed for the voxel

i of the target. For example, suppose that a prescription specifies the dose absorbed for

the i voxel from 5Gy to 10Gy. These values have the most and least degree of satisfaction

respectively, because, if the tumor absorbs less dose, then the organs at risk absorb less

dose too. Let the degree of satisfaction be normalized as a membership degree, by bimin

with the membership degree 1 and bimax with the membership degree zero and membership

degree between 5Gy and 10Gy be1 (See Figure 3). To be able to consider as a trapezoidal

fuzzy number, it is enough to select p in Definition 1 as a number that is very close to

bimin , like p = bimin − 10−5 . Therefore, we consider b̃i = (bimin − 10−5, bimin , b̄i, bimax) that

µb̃i(y) is represented as below:

(y−bimin
+10−5)

10−5 , bimin
− 10−5 ≤ y ≤ bimin

;

1, bimin
≤ y ≤ b̄i;

(bimax−y)

(bimax−b̄i)
, b̄i ≤ y ≤ bimax ;

0, otherwise;

In the sense of [1], here, there exists an α-cut of b̃i for each α ∈ [0, 1]; the left-hand point

of an α-cut is bLi (α) = p+ (q − p)α and the right-hand point of it is bLi (α) = s− (s− r)α
(see Figure 3).

Therefore Corresponding to the crisp interval [bLi (α), bUi (α)], we have the level α fuzzy

interval [bLi (α)α, b
U
i (α)α] (Chiang 2001). By 4.1 we have

µ[bLi (α)α,bUi (α)α](x) =

α, bLi (α) ≤ x ≤ bUi (α);

0, otherwise,

Figure 3. left) Membership function; right) α-cut of b̃i
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As previously mentioned, the influence matrix At and the vector x are crisp; thus, each

component like (Atx)i is also crisp. In the manner explained in (Chiang 2001), we define

the signed distance of the crisp interval [bLi (α), bUi (α)] to the crisp number (Atx)i as:

d∗([bLi (α), bUi (α)], (Atx)i) =
1

2
[d∗(bLi (α), (Atx)i) + d∗(bUi (α), (Atx)i)]

= −(Atx)i +
1

2
[bimin

+ bimax + (b̄i − bimax)α)].

Since the α- cut [bLi (α), bUi (α)] and the α-level fuzzy interval [bLi (α)α, b
U
i (α)α] are one to

one correspondence, then one can define the signed distance of the α-level fuzzy interval

[bLi (α)α, b
U
i (α)α] from (Ãtx)i by

(4.2) d([bLi (α)α, b
U
i (α)α], ˜(Atx)i) = d∗([bLi (α), bUi (α)], (Atx)i).

We remind that (Atx)i is regarded as a fuzzy number by the usual one-to-one correspon-

dence. The above function d is continuous respect to α in [0, 1], now like (Chiang 2001)

we can use a definite integral to find its average value. Therefore, we define the signed

distance of b̃i from (Atx)i as

(4.3) d(b̃i, ˜(Atx)i) =

∫ 1

0

d∗([bLi (α), bUi (α)], (Atx)i)dα =
bimin

2
+
b̄i + bimax

4
− (Atx)i.

We also introduce the following distance as a criterion for evaluating the proximity bt and

Atx.

d(b̃t, Ãtx) =

√√√√ mt∑
i=1

(d(b̃i, ˜(Atx)i))2

Hence in fuzzy environment, 3.2 is converted to the following one:

q(x, s, u) = d(b̃t, Ãtx) +
1

2
‖Ax+ s−u‖2 =

1

2
‖Atx− (

bmin

2
+
b̄+ bmax

4
)‖2 +

1

2
‖Ax+ s−u‖2,

thus by changing the fuzzy vector b̃t to a non-fuzzy vector bt, the way of solving 3.4 in

fuzziness state is the same as its crisp state, except that b̃t is replaced by bmin
2

+ b̄+bmax
4

.

5. Algorithm

For u ∈ Dv, one can prove that f(u) is differentiable and that∇f(u) = ∇uq(x(u), s(u), u) =

−max(Ax(u)− u, 0) ≤ 0, and that s(u) = max(u−Ax(u), 0). The derivation of this for-

mula is rather long. The feasible set Dv is a non-convex set consisting of a large number of
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“branches”. Therefore, we can use the algorithm mentioned in (Merritt 2006) that seeks

a “good” local minimum of 3.4 in an efficient manner. This algorithm uses a relaxation

scheme based on the sensitivity of f and is called the Sensitivity-Driven Greedy (SDG)

algorithm.

SDG Algorithm

Input: Initial dose u0 ∈ Dv;

Output: Optimal beamlet intensities x(uk);

for k = 0, 1, 2, . . .

Solve f(uk) for x(uk);

Compute ∇f(uk) = −max(Ax(uk)− uk, 0);

if stopping condition are met (‖uk+1 − uk‖ < ε),

the output is x(uk) and stop

else

Set uk + 1 = ProjDkv (uk −∇f(uk)), where Dk
v = {u : u ≥ uk} ∩Dv.

end if

end for

Our choice for u0 is the prescribed dose bounds at the lowest level DVCs. Note that in

Step 4 the vector inside the projection operator is

uk −∇f(uk) ≡ max(uk, Ax(uk)) ≥ uk.

Hence, a dose bound uki is replaced by the calculated dose value [Ax(uk)]i whenever the

latter is greater. The resulting larger vector is then projected onto the set Dk
v to obtain the

next dose bound uk+1. The following theorem shows that this algorithm is convergence

(See (Merritt 2006)).

Theorem 5.1. If A be full column rank, the Sensitivity-Driven Greedy Algorithm, without

stopping, generates an infinite sequence {uk} that converges to a local minimum of f in

Dv.

The bulk of the computation in the SDG algorithm is to solve the sub-problem Q(uk)

in Step 1 at each iteration which is a convex quadratic program known as a non-negative

least-squares (NNLS) problem. Given their relatively large sizes in IMRT applications,

a fast algorithm for solving these NNLS problems is of primary importance. On the
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other hand, due to the errors in leaf-sequencing, measurement, imaging, dose calculation,

patient motion, etc., high-accuracy solutions are not necessary. Like (Bahr, Kereiakes, et

al. 1968), in our implementation, we use an interior-point gradient algorithm that was

originally designed to strike a balance between reasonable accuracy and efficiency in this

application.

6. Numerical Experiments

In our experiments, we used the QIB dose calculation engine native from CERR to

generate an influence matrix for each test case using five equally-spaced beams. Our

numerical experiments have been conducted on head-and-neck. (See Figure 4).

Figure 4. left) Importing scans for head and neck into CERR environ-

ment; right) IMRTP window in CERR environment for does calculation.

In IMRT, the DVC compliance is visualized by dose-volume histograms (DVHs), where

the x-axis represents dose values and y-axis represents accumulated volume percentage.

In the DVH, each planning structure has a corresponding curve. The ideal curve for a

target structure is a step function dropping from 100 to zero at the prescribed dose value.

For a healthy structure, the lower curve is better. On the other hand, a dose distribution

satisfies the DVC if the curve is below or goes through the corresponding point. The DVC

and DVH for the head-and-neck cancer case are given in Table 1 and Figure 5.
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Table 1. The number of voxels and DVCs for head-and-neck case

Structures The number of voxels Prescribed dose Volume

Target 1 5206 d̃t = (63− 10−5, 63, 75, 80) 95%

Target 2 2412 d̃t = (56− 10−5, 56, 70, 75) 95%

Brain Stem 671 23 45%

Parotid Glands 838 30 50%

Table 2. Dosimetric parameters of Target 1, Target 2, Brain Stem, and

Parotid Glands for head-and-neck case in three methods

Structures Evaluated trapezoidal fuzzy CERR

Items target dose software

Target1 Dmin, 61.74 60.77

Dmax 68.64 74.07

Dmean 66.47 69.20

D95% 64.80 65.58

Target2 Dmin 49.52 49.21

Dmax 66.29 71.12

Dmean 60.48 60.71

D95% 59.36 58.56

Brain Stem Dmin 0.88 0.79

Dmax 45.43 44.95

Dmean 20.12 21.02

D95% 21.05 18.83

Parotid Glands Dmin 8.12 3.8500

Dmax 37.47 54.8600

Dmean 23.57 24.0600

D95% 21.05 18.8300
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Figure 5. left) The obtained DVH of running Algorithm on the head-and-

neck cancer case with prescribed trapezoidal fuzzy target dose; different

colors are utilized to clarify the organs; right) The DVH is generated by the

CERR software.

As shown in Figure 5, the curves of target 1 and target 2 in the trapezoidal fuzzy state

have a better dose coverage related to the curves generated by the CERR software with

the prescribed crisp target dose. According to the values of Dmax, Dmin, Dmean, D45%,

and D50% in Table 2, in the CEER method, despite the relatively high dose coverage

in the tumor structures, the Dmin in the parotid glands is significantly higher than the

Dmin in trapezoidal method, which means that the CERR method causes more damage

to this critical organ.

7. conclusion

In the present article, a novel prescribed dose for target structure based on the concept

of the trapezoidal fuzzy number in treatment planning was proposed. To verify its effec-

tiveness, the proposed dose in the trapezoidal fuzzy number state was compared with the

crisp state on a head-and-neck cancer case. Figure 5 left shows the optimization results

for the head-and-neck cancer case with the prescribed trapezoidal fuzzy target dose in the

DVH format, and Figure 5 right displays the DVH generated by the software CERR with

the prescribed crisp target dose. In general, the obtained results show that the IMRT

method with trapezoidal fuzzy target dose has better dose coverage in target structures

and improves the quality of treatment planning.
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