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Abstract. Let I be an ideal of C(X). In this paper we show that Ann(I) = OβX\θ(I)

and mAnn(I) = OβX\intβXθ(I), where θ(I) =
⋂
f∈I clβXZ(f) and mI is the pure part of

I. We also show that Ann(Ann(I)) = OintβXθ(I) and mAnn(Ann(I)) = OclβX intβXθ(I).

Finally, we show that a space X is a ∂-space if and only if every nonregular prime ideal

of C(X) is a z-ideal.

1. Introduction

Throughout this paper, all rings are commutative with unity. Let R be a ring and

S ⊆ R. The ideal generated by S is denoted by < S > and Ann(S) = {r ∈ R : rs =

0, for all s ∈ S}. For a ∈ R we use Ann(a) instead of Ann({a}). An element a ∈ R is

said to be a regular (resp., zerodivisor) element if Ann(a) = (0) (resp., Ann(a) 6= (0)).

An ideal I of a ring R is called dense if Ann(I) = (0). An ideal I of a ring R is called

regular if it contains a regular element otherwise it is called nonregular, for details about

nonregular ideals, see [14]. Also the intersection of all maximal (resp., minimal prime)

ideals containing a is denoted by Ma (resp., Pa). A nonzero ideal is called essential if it

intersects every nonzero ideal nontrivially. Max(R), Spec(R), Jac(R) and rad(R) denote

the set of all maximal ideals, the set of all prime ideals, the intersection of all maximal
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ideals and the intersection of all prime ideals of R, respectively. If Jac(R) = (0) (resp.,

rad(R) = (0)), then we call R a semiprimitive (resp., reduced) ring. All topological

spaces are completely regular Hausdorff. Let C(X) (resp., C∗(X)) be the ring of (resp.,

bounded) real valued continuous functions on X. For f ∈ C(X), the zero-set of f is the

set Z(f) = {x ∈ X : f(x) = 0} and Z(X) = {Z(f) : f ∈ C(X)}. The set-theoretic

complement of Z(f) is denoted by coz(f). It is well-known that an ideal I of C(X)

is a z◦-ideal (resp., z-ideal) if intXZ(f) = intXZ(g) (resp., Z(f) = Z(g)), f ∈ I and

g ∈ C(X) implies that g ∈ I. Clearly, every z◦-ideal is a z-ideal. It is also well-known

that f ∈ C(X) is a von Neumann regular element if and only if intXZ(f) = Z(f). It is

also easy to see that Ann(f) = (0) if and only if intZ(f) = ∅, for f ∈ C(X). The set of

all regular (resp., zerodivisor) elements of C(X) is denoted by r(X) (resp., zd(X)). For

an ideal I of C(X), we write Z[I] to designate the family of zero-sets {Z(f) : f ∈ I}
and Min(I) denotes the set of all prime ideals minimal over I. υX is the Hewitt real

compactification of X and βX is the Stone–Čech compactification of X. A space X is

pseudocompact if and only if βX = υX. We say that a subset S of X is C-embedded

in X if every function in C(S) can be extended to a function in C(X). The space X is

normal if and only if every closed subset is C-embedded, see [20]. Every maximal ideal of

C(X) is precisely of the form Mp = {f ∈ C(X) : p ∈ clβXZ(f)}, where p ∈ βX, see [20,

Theorem 6.5]. The prime ideals containing a given prime ideal form a chain, also every

prime ideal is contained in a unique maximal ideal Mp, for a unique p ∈ βX; and the

intersection of all the prime ideals contained in Mp is the ideal Op = {f ∈ C(X) : p ∈
intβXclβXZ(f)}. For a subset A ⊆ βX, we define MA = {f ∈ C(X) : A ⊆ clβXZ(f)},
OA = {f ∈ C(X) : A ⊆ intβXclβXZ(f)}. In particular, if A ⊆ X, we denote MA (resp.,

OA) by MA (resp., OA) and if p ∈ X, then Mp and Op are denoted by Mp and Op,

respectively. A subset A of βX is called a round subset if OA = MA. For f ∈ C(X) it is

easy see that Mf = MZ(f) and Pf = OintXZ(f). An interesting result of McKnight states

for any ideal I of C(X), Oθ(I) ⊆ I ⊆M θ(I) where θ(I) =
⋂
f∈I clβXZ(f), see [17, Theorem

1.3]. This fact is generalized in [5] for semiprimitive Gelfand rings. Also, in Theorem 3.1

of [10], it is shown that an ideal I of C(X) is essential if and only if Ann(I) = (0). An

ideal I of C(X) is called a pure ideal if for each f ∈ I, there exists g ∈ I such that f = fg.

For each ideal I of C(X), let mI = {f ∈ C(X) : f ∈ fI}. It is clear that mI is a pure

ideal, which is called the pure part of I. An ideal I of C(X) is pure if and only if I = mI.
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It is shown in Theorem 2.2 of [1] that mI = Oθ(I). I is the closure I in the m-topology.

It is shown that I = M θ(I), for details see 7Q in [20]. The largest z-ideal contained in

I is denoted by Iz and the smallest z-ideal containing I is denoted by Iz, for details see

Proposition 1.2 in [16].

Concerning topological spaces and C(X) the reader is referred to [19] and [20], respec-

tively. For more information about algebraic concepts see [9].

The paper is organized as follows. In Section 2, we characterize the annihilator of an

ideal in rings of continuous functions. In Section 3, we characterize the annihilator of the

annihilator of an ideal and its pure part in rings of continuous functions.

2. Characterization of Ann(I) in C(X)

We start this section with two well-known lemmas in which some connections between

βX and θ(I) are mentioned. For more information, see [2].

Lemma 2.1. Let f, g ∈ C(X), A,B ⊆ βX and I, J be two ideals of C(X). Then the

following statements hold:

(a) clβXA =
⋂
f∈OA clβXZ(f).

(b) clβXA = βX if and only if OA = (0).

(c) θ(OA) = θ(MA) = clβXA.

(d) MA = MB if and only if clβXA = clβXB.

(e) If (clβXcoz(f)) ∩X = (clβXcoz(g)) ∩X, then clβXcoz(f) = clβXcoz(g).

(f) clβX(βX \ clβXZ(f)) = clβXcoz(f).

(g) intβX(Z(fβ) ∪ θ(I)) = intβX(clβXZ(f) ∪ θ(I)).

(h) clβX(βX \ θ(I)) = clβXintβXclβX(βX \ θ(I)).

(i) Let I be an ideal of C(X) and f ∈ C(X). If θ(I) ⊆ intβXclβXZ(f) then f ∈ I.

The converse is true if θ(I) is a round subset of βX.

(j) Let A ⊆ βX and p ∈ βX. If OA ⊆Mp, then MA ⊆Mp.

Proof. We only prove part (j). The proof of other statements is straightforward.

j) Suppose on the contrary, that MA *Mp. Then p /∈ clβXA. Now by part (b) there exist

f ∈ C(X) such that p /∈ clβXZ(f) and A ⊆ intβXclβXZ(f). This means that f ∈ OA\Mp

which is a contradiction. �

Lemma 2.2. The following statements hold for two ideals I, J of C(X):
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(a) θ(I) = θ(mI) = θ(
√
I) = θ(I).

(b) θ(I + J) = θ(I) ∩ θ(J).

(c) θ(IJ) = θ(I ∩ J) = θ(I) ∪ θ(J).

(d) θ(I) = θ(Iz) = θ(Iz).

Proof. It is enough to note that for every ideal I in C(X) we have mI ⊆ Iz ⊆ I ⊆
√
I ⊆

Iz ⊆ I and θ(Oθ(I)) = θ(I) = θ(M θ(I)). The proof of other statements is straightforward.

�

The next proposition is the main result of this article.

Proposition 2.3. Let I be an ideal of C(X). Then Ann(I) = OβX\θ(I).

Proof. Assume that g ∈ Ann(I). Then coz(g) ⊆ θ(I). Hence, βX \θ(I) ⊆ intβXclβXZ(g).

This implies that g ∈ OβX\θ(I). Now suppose that g ∈ OβX\θ(I). Without loss of generality

we can consider g ∈ C∗(X). Then βX \ θ(I) ⊆ intβXclβXZ(g). We claim that coz(g) ⊆
θ(I) and then coz(g) ⊆ clβXZ(f), for any f ∈ I. Otherwise, there are f ∈ I and p ∈ coz(g)

such that p /∈ clβXZ(f). Therefore, p ∈ βX \ θ(I) and hence p ∈ intβXclβXZ(g). Since

g ∈ C∗(X), intβXclβXZ(g) = intβXZ(gβ) and so p ∈ intβXZ(gβ). This implies that

p /∈ clβXcoz(gβ) and hence p /∈ clβXcoz(g). Since clβXcoz(gβ) = clβXcoz(g). This implies

that p /∈ coz(g) which is not true. �

The following results is immediate.

Corollary 2.4. For each ideal I of C(X), mAnn(I) = OβX\intβXθ(I).

Proof. By Theorem 2.2 of [1] and Proposition 2.3 we can write:

mAnn(I) = Oθ(Ann(I)) = OclβX(βX\θ(I)) = OβX\intβXθ(I).

�

Corollary 2.5. The following statements hold for two ideals I, J of C(X) and f, g ∈
C(X):

(a) An ideal I is dense in C(X) if and only if βX \ θ(I) is dense in βX.

(b) Ann(I) = Ann(J) if and only if intβXθ(I) = intβXθ(J)

(c) Ann(f) = Ann(g) if and only if intXZ(f) = intXZ(g).

(d) Ann(I) = Ann(mI) = Ann(
√
I) = Ann(Iz) = Ann(Iz) = Ann(I).
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(e) Ann(f) = MclXcoz(f).

To some extent, part (a) of the above result shows the connection between the algebraic

dense and the topological dense concepts.

In the next proposition, we state another representations for the annihilator of an ideal

in C(X). For similar representations as in part (c), see [13]. We need the following lemma.

Lemma 2.6. For every f ∈ C(X), we have coz(f) =
⋃
g∈C(X) Z(1− fg).

Proof. It is clear that Z(1 − fg) ⊆ coz(f) for every g ∈ C(X). Conversely, suppose

that a ∈ coz(f) and consider the constant function g = 1
f(a)

. Thus, obviously we have

a ∈ Z(1− fg). �

Proposition 2.7. The following statements hold for an ideal I of C(X):

(a) Ann(I) = MβX\θ(I).

(b) Ann(I) = MβX\intβXθ(I).

(c) Ann(I) = {f ∈ C(X) : Z(1− fg) ⊆
⋂
Z[I] for all g ∈ C(X)}.

Proof. Part (a) follows from the fact that βX \ θ(I) is a round subset of βX and part (b)

is clear. For part (c), it is clear that f ∈ Ann(I) if and only if coz(f) ⊆
⋂
Z[I] if and

only if, by Lemma 2.6,
⋃
g∈C(X) Z(1− fg) ⊆

⋂
Z[I]. �

Remark 2.8. a) Let I be an ideal of a semiprimitive ringR, then Ann(I) =
⋂
I*M∈Max(R)M .

This fact is the same as Lemma 4.3 of [8], but it is not proved there. We prove it for

convenience of the readers. First suppose that x ∈ Ann(I) and M is a maximal ideal

such that I * M . Since xI = (0) ⊆ M , we infer that x ∈ M . Now assume that

x ∈
⋂
I*M∈Max(R)M and on the contrary let x /∈ Ann(I). Hence, there is a ∈ I such

that xa 6= 0. Since xa /∈ Jac(R), there exists a maximal ideal M such that xa /∈ M .

This means that I * M and x /∈ M which is not true. If I is an ideal of C(X), then

θ(I) = {p ∈ βX : I ⊆Mp}, see 7O in [20]. Therefore, I *Mp if and only if p ∈ βX \θ(I).

This shows that Ann(I) =
⋂
I*MpMp = MβX\θ(I) which is part (a) of the above proposi-

tion.

b) Let I be an ideal of a reduced ring R, then Ann(I) =
⋂
I*P∈Spec(R) P . This fact is the

same as Lemma 2.11 of [6]. The proof is similar to part (a).
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According to Propositions 2.3 and 2.7 it is easy to see that Ann(MA) = Ann(OA), for

every subset A of βX. Let I(X) denotes the set of all isolated point of X. The space X

is called almost discrete if I(X) is dense and X is said to be almost locally compact if it

has a dense locally compact subset, see [12]. First, we will introduce some famous ideals

in C(X) and then we will give some results about their essentiality. For details about the

below ideals see [20, 22, 24, 23, 12, 21, 26].

CF (X) = OβX\I(X) (resp., Cε(X) = MβX\I(X)) is the intersection of all essential (resp.,

essential maximal) ideals in C(X).

CK(X) = OβX\X (resp., Iψ(X) = MβX\X) is the intersection of all free (resp., free

maximal) ideals in C(X).

Iυ(X) = OβX\υX (resp., Cψ(X) = MβX\υX) is the intersection of all hyper-real free

(resp., hyper-real maximal) ideals in C(X).

Corollary 2.9. The following statements hold:

(a) Ann(CF (X)) = (0) if and only if Ann(Cε(X)) = (0) if and only if clXI(X) = X;

if and only if X is almost discrete.

(b) Ann(CK(X)) = (0) if and only if Ann(Iψ(X)) = (0) if and only if clβXintβXX

= βX; if and only if X is almost locally compact.

(c) Ann(Cψ(X)) = (0) if and only if Ann(Iυ(X)) = (0); if and only if clβXintβXυX

= βX.

It is a well-known fact that if I and J are two prime ideals or z-ideals of C(X), then

IJ = I∩J . In the next lemma, we show that this fact is also holds for the semiprime ideals

in C(X). Recall that if f, g ∈ C(X), then Ann(f) = Ann(g) if and only if intXZ(f) =

intXZ(g), see Lemma 2.1 in [3].

Lemma 2.10. The following statements hold:

(a) Let I, J be two semiprime ideals of C(X). Then IJ = I ∩ J .

(b) Every semiprime ideal of C(X) is an idempotent ideal.

(c) Let I be a finitely generated ideal of C(X). Then I is idempotent if and only if I

is generated by an idempotent.

(d) For any f, g ∈ C(X), we have Ann(f) = (g) if and only if intXZ(f) = clXcoz(g) =

coz(g).
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Proof. We prove part (d). The proof of other statements is straightforward. First suppose

that Ann(f) =< g > for some g ∈ C(X). By parts (b) and (c) we conclude that

Ann(f) =< e >= Ann(1 − e), for some idempotent e ∈ C(X). Therefore, intXZ(f) =

intXZ(1 − e) = Z(1 − e) = coz(e) = coz(g) = clXcoz(e) = clxcoz(g). Next, we let

intXZ(f) = clXcoz(g) = coz(g). Then there is an idempotent e ∈ C(X) such that

< g >=< e >. Thus, intXZ(f) = intXZ(1 − e) and hence Ann(f) = Ann(1 − e) =<

e >=< g > and we are done. �

The following result is the same as Theorem 3.1 in [10]. Before that, we need the

following lemma, the proof of which is obvious.

Lemma 2.11. Let X be dense in T and A is a closed subset of T . Then we have X ∩
intT (A) = intX(A ∩X). Therefore, intT (A) = ∅ if and only if intX(A ∩X) = ∅.

Corollary 2.12. Ann(I) = (0) if and only if intβXθ(I) = ∅ if and only if intX(θ(I)∩X) =

∅ if and only if intX(
⋂
f∈I Z(f)) = ∅.

∂-spaces are first introduced in [15]. A space X is called a ∂-space if the boundary of

any zero-set in X is contained in a zero-set with empty interior. For more details about

∂-spaces and examples of ∂-spaces, see [15].

Proposition 2.13. The following statements hold:

(a) X is a normal space if and only if MA+MB = MA∩B, for every two closed subsets

A and B of X.

(b) Let A,B be two closed subsets of βX. Then MA∩B = MA +MB.

Proof. a) See part (b) of Lemma 2.8 in [4].

b) Because βX is normal, it is clear according to part (a). �

Frontier ideals are first introduced in [18]. An ideal I of a ring R is called a frontier

ideal if I = Ma + Ann(a), for some a ∈ R. A ring R is said to be a boundary ring (briefly,

∂-ring) if every frontier ideal of R is a regular ideal. The following lemma is true for every

reduced ring.

Lemma 2.14. Every frontier ideal of C(X) is an essential ideal.
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Proof. Let I be a frontier ideal of C(X). Hence, there exists f ∈ C∗(X) such that

I = MZ(f) +MclXcoz(f) by part (d) of Corollary 2.5. Therefore, by part (b) of Lemma 2.2

we have θ(I) = ∂Z(f) ⊆ ∂Z(fβ). Hence, intβXθ(I) ⊆ intβX∂Z(fβ) = ∅. This implies

that Ann(I) = (0) by Corollary 2.12. �

Now, according to the results of this article, we combine the two Theorems 2.9 of [18]

and 4.4 of [15] regarding to ∂-spaces with a different and shorter proof in the ring C(X).

In [18], the proof is stated for the boundary frames. In addition, part (d) of the following

theorem is a new characteristic for ∂-spaces. Recall that Ann(f) = Ann(g) if and only if

intXZ(f) = intXZ(g), for f, g ∈ C(X), see Proposition 1.1 in [15].

The following lemma is Corollary 4.6 in [15].

Lemma 2.15. X is a ∂-space if and only if βX is so.

Proposition 2.16. The following statements are equivalent:

(a) X is a ∂-space.

(b) C(X) is a ∂-ring.

(c) Every nonregular prime ideal of C(X) is a z◦-ideal.

(d) Every nonregular prime ideal of C(X) is a z-ideal.

Proof. (a ⇒ b) According to Lemma 2.15, we may assume that X is compact. Let I be

a frontier ideal of C(X). Hence, there exists f ∈ C(X) such that I = MZ(f) +MclXcoz(f).

Since X is normal, by Proposition 2.13, we conclude that I = M∂Z(f) = MZ(f)∩clXcoz(f).

By hypothesis, there is g ∈ C(X) such that ∂Z(f) ⊆ Z(g) and intXZ(g) = ∅. This means

that g ∈M∂Z(f) = I, i.e., I is regular.

(b ⇒ a) Let f ∈ C(X). Take I = MZ(f) + MclXcoz(f). By hypothesis, there is g ∈ I such

that intXZ(g) = ∅. Since I ⊆M∂Z(f) we infer that g ∈M∂Z(f) and so ∂Z(f) ⊆ Z(g).

(b⇒ c) Let P be a nonregular prime ideal. We are to show that P is a z◦-ideal. Suppose

that Ann(f) = Ann(g), f ∈ P and g ∈ C(X). Put I = Mf + Ann(f). By hypothesis,

I ∩ r(X) 6= ∅. Hence, there is h ∈ I such that intXZ(h) = ∅. Therefore, there are a ∈Mf

and b ∈ Ann(f) such that h = a + b. Since coz(b) ⊆ Z(f) ⊆ Z(a) we infer that ab = 0

and hence Z(b2 + f 2) ⊆ Z(a2 + b2) = Z(h). On the other hand, bg = 0 ∈ P . If b ∈ P
then b2 + f 2 ∈ P which is not true, for intXZ(b2 + f 2) = ∅ and P is nonregular. This

implies that g ∈ P and we are done.
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(c⇒ d) It is obvious.

(d ⇒ b) Let I = Mf + Ann(f), for some f ∈ C(X) and on the contrary suppose that

I ⊆ zd(X). Then there is P ∈ Min(I) such that P ⊆ zd(X). Since < f,Ann(f) >⊆ P ,

then we deduce that P is not a minimal prime ideal. Thus, there is a minimal prime ideal

Q of C(X) such that Q $ P . Suppose that g ∈ P \Q. Also assume that P ∗ be the largest

prime ideal which g /∈ P ∗ and Q ⊆ P ∗. Since P ∗ is a lower ideal we infer that it is not a

z-ideal, see 14D.4 in [15]. Now P and P ∗ both containing Q, then must be comparable.

But P * P ∗, for g ∈ P \ P ∗ and P ∗ ⊆ P implies that P ∗ ⊆ zd(X) and by hypothesis P ∗

should be a z-ideal which is not true. �

A space X is said to be cozero complemented if for each f ∈ C(X), there is g ∈ C(X)

such that g ∈ Ann(f) and f 2 +g2 ∈ r(X). Clearly, f 2 +g2 ∈Mf +Ann(f) and this shows

that every cozero complemented space is a ∂-space. To see the generalization of this fact

about f -rings, refer to Proposition 3.1 of [18].

A space X is said to be extremally disconnected if every open set has an open clo-

sure. It is well-known that X is extremally disconnected if and only if βX is ex-

tremally disconnected if and only if for every two closed subsets A,B of βX the equality

intβX(A ∪B) = intβXA ∪ intβXB holds, see [20], [19] and [2].

Proposition 2.17. The following statements are equivalent:

(a) X is an extremally disconnected space.

(b) For every two ideals I, J of C(X), MβX\θ(I) +MβX\θ(J) = MβX\θ(I∩J).

(c) For every two ideals I, J of C(X), Ann(I) + Ann(J) = Ann(I ∩ J).

Proof. (a⇒ b) Let f ∈MβX\θ(I∩J). Then clβX(βX \ θ(I))∩ clβX(βX \ θ(J)) ⊆ clβXZ(f).

By hypothesis, there are two idempotent gβ, hβ ∈ C(βX) such that clβX(βX \ θ(I)) =

Z(gβ) and clβX(βX \ θ(J)) = Z(hβ). Since Z((gβ)2 + (hβ)2) ⊆ intβXZ(fβ) then by 1D.1

of [20] we infer that fβ is a multiple of (gβ)2 + (hβ)2, that is fβ = ((gβ)2 + (hβ)2)kβ

for some kβ ∈ C(βX). This implies that f = (g2 + h2)k. On the other hand, βX \
θ(I) ⊆ intβXZ(gβ) = intβXclβXZ(g) ⊆ clβXZ(g) implies that g ∈ MβX\θ(I). Similarly

h ∈ MβX\θ(J). Then we conclude that f ∈ MβX\θ(I) + MβX\θ(J). This completes the

proof.

(b ⇒ a) Assume that A,B be two closed subsets of βX. Put I = OA and J = OB.

Then θ(I) = A and θ(J) = B. Therefore, θ(MβX\θ(I∩J)) = θ(MβX\(A∪B)) = θ(MβX\A) ∩
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θ(MβX\B). This implies that intβX(A ∪ B) = intβXA ∪ intβXB. This means that βX is

an extremally disconnected space and hence X is an extremally disconnected space.

(a⇔ c) See Theorems 2.3.2 and 5.3.7 in [2] and Corollary 2.13 in [25]. �

A space X is called basically disconnected if every open cozero-set has an open closure.

It is well-known that X is basically disconnected if and only if βX is basically disconnected

if and only if for every zero-set Z in βX and every closed subset A of βX the equality

intβX(Z ∪ A) = intβXZ ∪ intβXA holds. For more details, see [20] and [2].

Proposition 2.18. The following statements are equivalent:

(a) X is a basically disconnected space.

(b) For every f ∈ C(X) and every ideal I of C(X), MβX\θ(I) + MβX\clβXZ(f) =

MβX\(clβXZ(f)∪θ(I)).

(c) For every f ∈ C(X) and every ideal I of C(X), Ann(f) + Ann(I) = Ann(fI).

Proof. The proof is similar to Proposition 2.17. �

A space X is said to be an F -space if every finitely generated ideal in C(X) is principal.

It is well-known that X is an F -space if and only if βX is an F -space if and only if for

every two zero-sets Z1, Z2 in βX the equality intβX(Z1 ∪Z2) = intβXZ1 ∪ intβXZ2 holds.

For more information about F -spaces, see [20] and [2].

Proposition 2.19. The following statements are equivalent:

(a) X is an F -space.

(b) For every f, g ∈ C(X) with fg = 0, MclXcoz(f) +MclXcoz(g) = C(X)

(c) For every two f, g ∈ C(X),

MβX\clβXZ(f) +MβX\clβXZ(g) = MβX\(clβX(Z(f)∪Z(g))).

(d) For every f, g ∈ C(X), Ann(f) + Ann(g) = Ann(fg).

Proof. The proof is similar to that of Proposition 2.17. �

3. Characterization of Ann(Ann(I)) in C(X)

In this section, we characterize Ann(Ann(I)) and its pure part for an ideal I of C(X)

topologically. Recall that
⋂
Z[Ann(I)] =

⋂
cozI⊆Z(f) Z(f), where cozI =

⋃
g∈I coz(g).
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Proposition 3.1. The following statements hold for an ideal I of C(X):

(a) Ann(Ann(I)) = OintβXθ(I).

(b) Ann(Ann(I)) = M intβXθ(I).

(c) Ann(Ann(I)) = M clβX intβXθ(I).

Proof. We prove part (b). The proof of the other statements are straightforward. By

Proposition 2.7, θ(Ann(I)) = θ(MβX\θ(I)) = clβX(βX \ θ(I)). Therefore, Ann(Ann(I)) =

MβX\θ(AnnI) = MβX\clβX(βX\θ(I)) = M intβXθ(I). �

Proposition 3.2. Let X be a pseudocompcat space. For each ideal I of C(X) the following

statements hold:

(a) I + Ann(I) = M∂θ(I).

(b) Ann(Ann(I)) + Ann(I) = M∂(intβXθ(I)).

(c) Ann(Ann(I)) + Ann(I) = M∂(clβX intβXθ(I)).

(d) Ann(M∂θ(I)) = Ann(M∂(intβXθ(I))) = Ann(M∂(clβX intβXθ(I))) = (0).

Proof. We only prove part (a). The proof of other statements is straightforward.

M∂θ(I) = M θ(I)\intβXθ(I) = M θ(I)∩(βX\intβXθ(I)) = M θ(I) + MβX\intβXθ(I). This implies that

M∂θ(I) = I + Ann(I). �

It is well known that if R is reduced ring and a ∈ R, then Pa = Ann(Ann(a)), see

Proposition 1.4 of [7]. Using this and topological representation of Ma, the following

result is evident.

Lemma 3.3. For each f ∈ C(X), we have Pf = OintβXclβXZ(f) and Mf = M clβXZ(f).

In general, the equality I = J does not follow from the equality of mI = mJ . In the

next proposition, we see that this criterion holds for certain ideals of C(X). Recall that

mI = mJ if and only if I = J .

Proposition 3.4. Let I, J be two ideals of C(X). Then the following statements are

equivalent:

(a) Ann(I) = Ann(J).

(b) Ann(I) = Ann(J).

(c) mAnn(I) = mAnn(J).
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Proof. The implications (a⇒ b) and (b⇒ c) are clear.

(c ⇒ a) By Corollary 2.4 we have OβX\intβXθ(I) = OβX\intβXθ(J). Therefore, βX \
intβXθ(I) = βX \ intβXθ(J) and hence intβXθ(I) = intβXθ(J). Now by part (b) of

Corollary 2.5 we have Ann(I) = Ann(J). �

The following example shows that (c⇒ a) of Proposition 3.4 is not true, in general.

Example 3.5. Let R = F [x]
I

, where F is a field and I =< x3 >. We consider two ideals

in R, namely I =< x + I > and J =< x2 + I >. Then, Ann(I) = J and Ann(J ) = I.

Clearly, mI = mJ = (0), while I 6= J .

Proposition 3.6. For each ideal I of C(X), mAnn(Ann(I)) = OclβX intβXθ(I).

Proof. By Corollary 2.4 and Proposition 3.1 it is clear. �

We conclude the paper with the following proposition, which states a topological state-

ment when the ideals mI and Ann(I), for an ideal I of C(X) are summand.

Proposition 3.7. For each ideal I of C(X), θ(I) is open if and only if mI ⊕ Ann(I) =

C(X).

Proof. (⇒) Since θ(I) is clopen, then there is f ∈ C(X) such that Z(f) = intXZ(f)

and Ann(I) = Ann(f). Hence, there exists g ∈ C(X) such that f = f 2g and also

f ∈ I. Therefore, fg ∈ mI and 1 − fg ∈ Ann(I). Now 1 = fg + (1 − fg) shows that

mI ⊕ Ann(I) = C(X).

(⇐) Suppose on the contrary, that there exists p ∈ θ(I) \ intβXθ(I). Then MβX\θ(I) =

Ann(I) ⊆ Mp and mI ⊆ MP . This implies that mI ⊕ Ann(I) ⊆ Mp which is a contra-

diction. �
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