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Abstract. This study aims to define ⊥-proximally increasing mappings and compute

some best proximity point results regarding this mapping in the framework of new spaces

on the Riemannian manifolds. The new spaces are called strongly orthogonal Riemannian

metric spaces.

1. Introduction

Fixed point theory has been widely utilized in nonlinear analysis since Banach intro-

duced his renowned contraction principle in 1922. Numerous researchers have expanded

this theory in two ways and have applied these extensions for various purposes, such as es-

tablishing the existence and uniqueness of solutions for integral, ordinary, and partial dif-

ferential equations, enhancing iterative algorithms, and addressing engineering challenges.

One approach involves the establishment of new contractions to prove the existence of a

fixed point for certain mappings that satisfy specific criteria.

In 2011, Raj [19] redefined the concept of the best proximity point and established

several theorems for weakly contractive nonself-mappings. This seminal work laid the

foundation for the best proximity point theory, which aims to delineate conditions ensuring

the existence of these critical points. Consequently, numerous scholars have delved into
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diverse contraction types to corroborate the presence of best proximity points in varied

metric spaces and ordered metric spaces, as detailed in the references [3, 22], and their

corresponding works. Although the most effective approximation theorems are suitable

for providing an approximate solution to the equation Tx = x, these results may not yield

an optimal approximate solution. Conversely, best proximity point theorems provide an

optimal approximate solution. Specifically, a best proximity point theorem outlines the

necessary conditions for the existence of an element x that minimizes the error d(x, Tx).

Recently, Eshaghi et al. [6] introduced the concept of orthogonal sets and orthogonal

Riemannian metric spaces. They also demonstrated the existence of the Banach fixed

point theorem in orthogonal Riemannian metric spaces [6], and further extensions of this

theorem have been derived in [2, 17, 16]. Additionally, there have been notable general-

izations of the Banach contraction principle.

In 1969, Ky Fan [7] introduced a fixed point problem for non-self mapping, focusing

on the concept of the best proximity point. This theory is an extension of the fixed

point theorem, with the best proximity point theorem being a natural outcome. Notably,

significant best proximity point effects have been observed in [10, 20, 23]. For in-depth

understanding and practical implementations, it is advisable to consult references [9, 8].

Recent deliberations have delved into the existence of fixed points and best proximity

points for specific mappings in Riemannian metric spaces and orthogonal Riemannian

metric spaces.

2. Preliminaries

In this section, we state the main definitions required.

Definition 2.1. Let M be a smooth manifold. The 2-tensor positive definite field g on

M that is covariant, symmetric and smooth is called a Riemannian metric onM. In this

case, we call the pair (M, g) a Riemannian manifold [12].

This imply that for some smooth coordinate (U , a) on l-dimensoinal manifold M, the

l2 functions,

g(
∂

∂ai
,
∂

∂aj
) : U → R,
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are smooth. The set gp of inner products creates a Riemannian metric. For all point p ∈
M, a Riemannian metric represent a positive definite inner product gp : TpM×TpM→ R,

along with which comes a norm | · |p : TpM→ R determined by |v|p =
√

gp(v, v).

Definition 2.2. Assume that (M, g) is a Riemannian manifold and γ : [a, b] →M is a

curve segment that is piecewise smooth, the integral

L(γ) =

∫ b

a

|γ′(t)|γ(t) dt,

is well-defined and is called length of γ. For any differentiable curve that is continuous

piecewise, we can determine its length by efficiently expanding this description.

Definition 2.3. Precisely, define dg :M×M→ [0,∞) by

dg(p, q) = inf{L(γ) : γ a piecewise continuously differentiable curve from p to q},

were satisfies all of the axioms of a Riemannian metric.

Definition 2.4. ([6]) Assume that M is a Riemannian manifold and ⊥ be a binary

relation represented on M×M. If ⊥ satisfies the subsequent condition.

∃a0; ((∀b; b⊥a0) or (∀b; a0⊥b)),

it is called an orthogonal Riemannian manifold (briefly ORM -st). The element a0 is called

an orthogonal element.

Suppose that (M,⊥) be an orthogonal set and d be a Riemannian metric onM. Then,

we say that (M,⊥, d) is an orthogonal Riemannian metric space.

Example.([4]) Let M = [2,∞), we define a⊥b if a ≤ b then by putting a0 = 2, (M,⊥)

is an ORM -st.

Definition 2.5. ([6]) Let (M,⊥) be an orthogonal Riemannian manifold (ORM -st). An

orthogonal sequence (shortly O-sequence) is a sequence like {an}n∈N such that for every

n in N, we have

an⊥an+1 or an+1⊥an.

Also, a Cauchy sequence {an} is declared a Cauchy O-sequence if for every n in N,

an⊥an+1 or an+1⊥an.
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Definition 2.6. [6] A mapping S : M −→ M is said to be orthogonal preserving (⊥
preserving) if c⊥b implies S(c)⊥S(b) for all c, b ∈M.

Definition 2.7. [6] An O-complete Riemannian metric space (M,⊥, d) is one where

every Cauchy O-sequence converges in M.

Remark that every complete Riemannian metric space is O-complete, but the contrary

is not true.

Definition 2.8. ([17]) Suppose that (M,⊥) is an orthogonal set (ORM -st). Then a

sequence {an}n∈N is said to be strongly orthogonal (shortly SO-sequence) when for all

n, t ∈ N we have

an⊥an+t or an+t⊥an.

Definition 2.9. ([17]) Let M be an orthogonal set. Then, M is SO-complete (strongly

orthogonal complete) if every Cauchy SO-sequence converges.

Understanding the concept of complete Riemannian metric space can be interesting, but

it is essential to know that it naturally leads to SO-completeness. However, it is important

to note that being SO-complete does not necessarily imply complete Riemannian metric

space ([17]).

Definition 2.10. ([17]) A mapping S : M −→ M is said to be strongly orthogonal

continuous (SO-continuous) in c ∈ M if for every SO-sequence {cn}n∈N in M such that

cn −→ c, it follows that S(cn) −→ S(c). Moreover, S is said to be SO-continuous on M
if it is SO-continuous for each c ∈M.

It is evident that each continuous mapping is SO-continuous. However, the converse is

not necessarily valid, as demonstrated in [17].

Example.([17]) Assume that M = (0,∞) and d is a normal Riemannian metric. Also,

we define a⊥b if ab = a. It is not difficult to realize that (M,⊥) is an ORM -set. Let

S :M→M specified by

Sa =


1 + a

2
, a ≤ 1

1

2
, a > 1.

The following can be concluded:
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1) M is not complete but it is SO-complete. This means that if we have an optional

Cauchy sequence {an} in M, then there exists a natural number n0 such that

an = 1 for all n ≥ n0. Therefore, the sequence {an} is the constant sequence 1

and as a result, an converges to a = 1.

2) The statement is that S is SO-continuous but not continuous. To prove this, let

{an} be an SO sequence that converges to a point a ∈ M. Using step 1, we can

find a value n0 ∈ N so that an = 1 for all n ≥ n0 and a = 1. This means that

S(an)→ 1 as n approaches infinity, which is equal to S(a).

3) S is orthogonal preserving. Actuality, if a⊥b, then b = 1. By description of S, we

understand that S(b) = 1 and S(a)S(b) = S(a), this implies S(a)⊥S(b).

Very recently, many authors continued this extension and examined on the existence of

fixed points for contractive mappings under various constraints on orthogonal Riemannian

metric spaces in [2, 17, 5, 16, 21] and references contained therein. Now, let H and K
be two non-empty subsets of a Riemannian metric space (M, d) and S : H → K be

a non-self mapping. The point a ∈ H is the best proximity point of S if d(a,Sa) =

d(H,K), where d(H,K) = inf{d(a, b); a ∈ H, b ∈ K}. The best proximity point theory is

designed to provide enough conditions for the existence of such points. This theorem is a

natural extension of a fixed point theorem. You can find some interesting best proximity

point results in Riemannian metric and partially ordered Riemannian metric spaces in

[1, 10, 11, 15, 18, 20, 19, 23]. Also, for applications, one can refer to [9, 8, 13, 14]. For

two non-empty subsets A and B, consider sets H0 and K0 defined as follows:

H0 = {a ∈ H : d(a, b) = d(H,K) for some b ∈ K},

K0 = {b ∈ K : d(a, b) = d(H,K) for some a ∈ H}.

To identify the adequate preconditions for the non-emptiness of H0 and K0, it is recom-

mended to consult reference [10].

Definition 2.11. ([19]) Let (H,K) denote a pair of non-empty subsets of (M, d), where

H0 is non-empty. The pair (H,K) is stated to exhibit the P-property if and only ifd(a1, b1) = d(H,K)

d(a2, b2) = d(H,K)
⇒ d(a1, a2) = d(b1, b2),

where a1, a2 ∈ H0 and b1, b2 ∈ K0.
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It is straightforward to investigate that for a non-empty subsets H of (M, d), the couple

(H,H) has the P-property.

Definition 2.12. [18] Consider a non-empty set M, which is a partially ordered set

concerning the relation � and also has a distance function d. Let H and K be two non-

empty subsets of M. A function S : H → K is stated to be proximally increasing if it

pleases the requirement that
b1 � b2

d(a1,Sb1) = d(H,K)

d(a2,Sb2) = d(H,K)

⇒ a1 � a2,

where a1, a2, b1, b2 ∈ H.

The rest of the article is organized as follows: In Section 1, we recall some definition and

propositions which are necessary for later section. In Section 2, we examine the existence

of the best proximity point for some contractions in strongly orthogonal Riemannian

metric spaces.

3. Main Results

To begin, let’s establish the following definition with a comprehensive level of detail.

Definition 3.1. A function S : H −→ Kv is stated to be ⊥-proximally increasing if it

satisfies the subsequent necessary condition
b1⊥b2

d(a1,Sb1) = d(H,K)

d(a2,Sb2) = d(H,K)

⇒ a1⊥a2,

where a1, a2, b1, b2 ∈ H.

We will now present and prove the existence result of this section.

Theorem 3.2. Let (M,⊥, d) is strongly orthogonal complete Riemannian metric space

and (H,K) be a pair of closed non-empty subset of the space (M,⊥, d) with H0 6= ∅. Let

S : H −→ K be a map which
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i) S is a ⊥-proximally increasing and ⊥-preserving such that S(H0) ⊆ K0, (H,K)

satisfies the P-property;

ii) The orthogonal elements a0 and a1 exist in H0 such that d(a1,Sa0) = d(H,K);

iii) S is a SO-continuous function on H such that

d(Sa,Sb) ≤ χ(d(a, b)),(3.1)

for any point a and b in H such that a⊥b and χ : R+ → R+ non-decreasing

function with limn→∞ χ
n(θ) = 0, for all θ > 0.

Then S has a best proximity point a∗ ∈ H such that d(a∗,Sa∗) = d(H,K).

Proof. By (ii), there exist a0 and a1 in H0 such that d(a1,Sa0) = d(H,K) and a0⊥a1.
Since Sa1 ∈ S(H0) ⊆ K0, there exist element a2 in H0 such that d(a2,Sa1) = d(H,K).

Since S is a ⊥-preserving and ⊥-proximally increasing, we get a1⊥a2. Continuing this

process, we can construct a sequence {an} in H0 such that

d(an+1,San) = d(H,K) , for all n ∈ N,(3.2)

with a0⊥a1, a1⊥a2, a2⊥a3, . . . , an⊥an+1, . . . .

Thus {an} is an O-sequence and consequently SO-sequence. Since (H,K) satisfies P-

property, for any n ∈ N, we have

(3.3)

d(an+1,San) = d(H,K),

d(an,San−1) = d(H,K)
=⇒ d(an+1, an) = d(San,San−1).

Claim: {an} is a Cauchy SO-sequence.

Now, since a0⊥a1, we have d(a2, a1) = d(Sa1,Sa0) ≤ χ(d(a1, a0)) and since a1⊥a2, we

have

d(a3, a2) = d(Sa2,Sa1) ≤ χ(d(a2, a1)) ≤ χ2(d(a1, a0)).

By induction

d(an+1, an) ≤ χn(d(a1, a0))→ 0

as n→∞. Let ζ > 0 be fixed. Choose N ∈ N so that

d(an+1, an) < ζ − χ(ζ), ∀n ≥ N.(3.4)
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We denote a ball with center x and radius ζ by B[a, ζ]. Since aN+1 ∈ B[aN , ζ], so

d(aN+1, aN) < ζ. Thus, from (3.1) and (3.3), we have

d(SaN+1,SaN−1) ≤ d(SaN+1,SaN) + d(SaN , TaN−1)

≤ χ(d(aN+1, aN)) + d(aN+1, aN) < χ(ζ) + (ζ − χ(ζ)) = ζ.(3.5)

Therefore, SaN+1 ∈ B[SaN−1, ζ]. From (3.2), d(aN+2,SaN+1) = d(H,K) with aN+2 ∈ H0

and d(aN ,SaN−1) = d(H,K). From (3.3), we have d(aN+2, aN) = d(SaN+1,SaN−1). By

(3.5), d(aN+2, aN) < ζ, so aN+2 ∈ B[aN , ζ] with aN+2 ∈ H0, therefore

aN+2 ∈ B[aN , ζ] ∩H.(3.6)

Again, from (3.1), (3.3) and (3.6), we get

d(SaN+2,SaN−1) ≤ d(SaN+2,SaN) + d(SaN ,SaN−1)

≤ χ(d(aN+2, aN)) + d(aN+1, aN) < χ(ζ) + (ζ − χ(ζ)) = ζ.(3.7)

Therefore, SaN+2 ∈ B[SaN−1, ζ]. From (3.2), d(aN+3,SaN+2) = d(H,K) with aN+3 ∈ H0

and d(aN ,SaN−1) = d(H,K). From (3.3), we get d(aN+3, aN) = d(SaN+2,SaN−1). By

(3.7), d(aN+3, aN) < ζ. So aN+3 ∈ B[aN , ζ] with aN+3 ∈ H0, therefore aN+3 ∈ B[aN , ζ]∩A.

Now, again

d(SaN+3,SaN−1) ≤ d(SaN+3,SaN) + d(SaN ,SaN−1)

≤ χ(d(aN+3, aN)) + d(aN+1, aN) < χ(ζ) + (ζ − χ(ζ)) = ζ.(3.8)

Therefore, SaN+3 ∈ B[SaN−1, ζ]. From (3.2), d(aN+4,SaN+3) = d(H,K) with aN+4 ∈ H0

and d(aN ,SaN−1) = d(H,K) and from (3.3), we get d(aN+4, aN) = d(SaN+3,SaN−1). By

(3.8), d(aN+4, aN) < ζ. So aN+4 ∈ B[aN , ζ] with aN+4 ∈ H0, therefore aN+4 ∈ B[aN , ζ]∩A.

Continuing this process, we have

d(SaN+n+1,SaN−1) ≤ d(SaN+n+1,SaN) + d(SaN ,SaN−1)

≤ χ(d(aN+n+1, aN)) + d(aN+1, aN) < χ(ζ) + (ζ − χ(ζ)) = ζ.

So, we can conclude that

aN+m ∈ B[aN , ζ] ∩H, ∀m ∈ N.

Then we get {an} is a Cauchy SO-sequence in H.

Since {an} is a Cauchy SO-sequence in H,M is a SO-complete and H is a closed subset



116 MEHDI JAFARI∗

of M, the SO-sequence {an} convergence to a∗ ∈ M. Since S is a SO-continuous map

on H, we have San → Sa∗. By the continuity of the mapping d, we get d(an+1,San) →
d(a∗,Sa∗). But ( 3.2 ) shows that sequence is a constant sequence converges to d(H,K).

Therefore, d(a∗,Sa∗) = d(H,K); that is, a∗ ∈ H is a best proximity point for S. �

Example. Let M = R2. Define d :M×M→ [0,+∞) by

d
(
(a1, b1), (a2, b2)

)
= (a1 − a2) + (b1 − b2)

for all (a1, b1), (a2, b2) ∈ R2. Let

H =
{

(a, 1) : a ∈ [0, 1]
}

and K =
{

(b, 0) : b ∈ [0, 1]
}
.

Clearly, d(H,K) = 1, H = H0 and K = K0. In particular H0 is nonempty.

Define binary relation ⊥ on M by (a1, b1)⊥(a2, b2) if (|a1 − a2| ≥ 5
6
, b1 = b2) and also

define the mapping S : H → K by

S(a, 1) =


(0, 0) 0 ≤ a < 1,

(
1

3
, 0) a = 1

(
x ∈ [0, 1]

)
.

Define the mapping χ : R+ → R+ by

χ(θ) =

 θ 0 ≤ θ < 1,

1 otherwise.

Observe that S is a ⊥-preserving and χ non-decreasing function with limn→∞ χ
n(θ) = 0,

for each θ > 0. Let (a1, 1), (a2, 1) ∈ H and (a1, 1)⊥(a2, 1), we have

• If a1, a2 ∈ [0, 1) and a1 > a2, so

d
(
S(a1, 1),S(a2, 1)

)
= d
(
(0, 0), (0, 0)

)
= 0

≤ (a1 − a2) = χ(a1 − a2) = χ
(
d((a1, 1), (a2, 1))

)
.

• If a1 ∨ a2 = 1 (let a2 = 1), so |a1 − a2| ≥ 5
6

and

d
(
S(a1, 1),S(1, 1)

)
= d
(
(0, 0), (

1

3
, 0)
)

=
1

3

≤ 5

6
≤ 1 = χ(a1 − 1) = χ

(
d((a1, 1), (1, 1))

)
.
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According to Equation (3.1), S satisfies the necessary conditions. Furthermore, all the

assumptions of Theorem 3.2 are satisfied, which implies that S has a unique best proximity

point a = (0, 1).

Theorem 3.3. Assume that (M,⊥, d) is strongly complete orthogonal Riemannian metric

space and (H,K) be a pair of closed non-empty subset of the space (M,⊥, d) with H0 6= ∅.
Let S : H −→ K be a map which

i) S is a ⊥-proximally increasing and ⊥-preserving such that S(H0) ⊆ K0, (H,K)

satisfies the P-property;

ii) The orthogonal elements a0 and a1 exist in H0 such that d(a1,Sa0) = d(H,K);

iii) S is a SO-continuous function on H such that

d(Sa,Sy) ≤ χ(Q(a, b)),(3.9)

where

Q(a, b) = max{d(a, b), d(aSa)− d(H,K), d(bSb)− d(H,K),

1

2
[d(a,Sb) + d(y,Sa)− 2d(H,K)],

1

2
[d(a,Sa) + d(b,Sb)− 2d(H,K)]},

for any point a and b in H such that a⊥b and χ : R+ → R+ non-decreasing

function with limn→∞ χ
n(t) = 0, for each t > 0.

Then S has a best proximity point a∗ ∈ H such that d(a∗,Sa∗) = d(H,K).

Proof. Similar to proof of Theorem 3.2, we shall prove that {an} is a Cauchy SO-sequence

in Riemannian metric space (M, d).

Now, since (H,K) satisfies P-property and by (3.9), we have

d(an+1, an) = d(San,San−1) ≤ χ(Q(an, an−1))

where

Q(an, an−1) = max{d(an, an−1), d(an,San)− d(H,K), d(an−1,San−1)− d(H,K),

1

2
[d(an,San−1) + d(an−1,San)− 2d(H,K)],

1

2
[d(an,San) + d(an−1,San−1)− 2d(H,K)]}.
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We now claim

d(an+1, an) ≤ χ(d(an, an−1)).(3.10)

Now, by using (3.2) and (3.3), we have

Q(an, an−1) = max{d(an, an−1), d(an,San)− d(H,K), d(an−1,San−1)− d(H,K),

1

2
[d(an,San−1) + d(an−1,San)− 2d(H,K)],

1

2
[d(an,San) + d(an−1,San−1)− 2d(H,K)]}

≤ max{d(an, an−1), d(an, an+1) + d(an+1,San)− d(H,K),

d(an−1, an) + d(an,San−1)− d(H,K),

1

2
[d(H,K) + d(an−1, an) + d(an,San−1) + d(San−1,San)− 2d(H,K)],

1

2
[d(an, an+1) + d(an+1, Tan) + d(an−1, an) + d(an,San−1)− 2d(H,K)]}

= max{d(an, an−1), d(an, an+1), d(an−1, an)

1

2
[d(an−1, an) + d(an, an+1)],

1

2
[d(an, an+1) + d(an−1, an)]}

= max{d(an, an−1), d(an, an+1),
1

2
[d(an−1, an) + d(an, an+1)]}

≤ max{d(an, an−1), d(an, an+1)}

Thus, using the above inequality, (3.2), (3.3) and (3.9), we get

d(an+1, an) ≤ χ(max{d(an, an−1), d(an, an+1)}), ∀n ∈ N.

Suppose that max{d(an, an−1), d(an, an+1)} = d(an, an+1) and since χ(θ) < θ for each

θ > 0, we get

d(an+1, an) ≤ χ(d(an, an+1)) < d(an, an+1),

that is a contraction. So, we obtain

max{d(an, an−1), d(an, an+1)} = d(an, an−1), ∀n ∈ N.

Thus

d(an+1, an) ≤ χ(d(an, an−1)), ∀n ∈ N.
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So, (3.10) holds. By induction, we have

d(an+1, an) ≤ χn(d(a1, a0)), ∀n ∈ N.

So limn→∞ d(an+1, an) = 0. To continue with the proof, we can follow a similar approach

as in Theorem 3.2. �

4. Conclusion

Here, we defined several contractive mappings and showed the existence of their best

proximity point. Several corollaries and comparisons are also explained in former sections

to show the importance of main theorems, which extend many previous papers [11, 14].
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