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Abstract. Real-count data time series often show the phenomenon of overdispersion.
This paper introduces the first-order integer-valued autoregressive process with a seasonal
structure. The univariate marginal distribution is derived from the Delaporte distribu-
tion. The innovations are the convolution of Poisson with α-fold zero modified geometric
distribution, based on the binomial thinning operator, for modeling integer-valued time
series with overdispersion. Some properties of the model are derived. The methods of
Yule-Walker, conditional least squares, and conditional maximum likelihood are used for
estimating the parameters. The Monte Carlo experiment is conducted to evaluate the
performances of these estimators in finite samples. At the end this model is illustrated
using a real data set and is compared to some INAR(1) models.

1. Introduction

Time series data with seasonal features can be found in different fields, such as actuarial
science, healthcare, economic, environment, and so on. They mostly display a seasonal
template with periods, that repeat itself after a regular interval of time. The smallest
time period for this event is called a seasonal period. Several factors such as weather and
inherent attributes, can cause seasonal structures.
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In many applications, it is clear that the assumption of a continuous-valued range may
not be appropriate. As an example, suppose that Xt be the number of individuals or
events at time t, such that the outcome is integer-valued and hence discrete. These are
time series arising from counting certain objects or events at specified times. The use of
conventional autoregressive time series models such as Xt = ρ · Xt−1 + εt, for counting
data is not recommended, because if the innovations of the model are counting and it is
not necessary that Xt to be counted. Therefore, the idea of using a binomial thinning
operator was proposed, which leads to the definition of “the integer-valued autoregressive
model”, or abbreviated to the INAR model. The binomial thinning operator for the first
time is defined in [27], as follows

(1.1) ρ ◦X =
X∑
i=1

Yi, X > 0,

and 0 otherwise, where the counting series Y := {Yi}i≥1 is an independent and identical
Bernoulli distributed with fixed success probability ρ ∈ [0, 1]. Also, non-negative integer-
valued random variable X is independent of Y ′

i s. Based on (1.1), for the first time, the
INAR(1) model introduced in [3] and [23], as follows

(1.2) Xt = ρ ◦Xt−1 + εt, t ∈ Z,

where 0 ≤ ρ < 1, and {εt}t∈Z is a sequence i.i.d integer-valued random variables, called
innovations and for each t, εt is independent of Xt−s for all s ≥ 1, E (εt) = µε and Var
(εt) = σ2

ε . From [3], for ρ ∈ [0, 1) and ρ = 1, the process {Xt}t∈Z are (strictly) stationarity
and non-stationarity, respectively. The autocorrelation function (ACF) of the model (1.2)
is ρk = Corr(Xt, Xt−k) = ρk, for k ≥ 0, that is, the same as ACF of AR(1), which takes
the only non-negative values. Also, ρ > 0 or ρ = 0 implies that the observations of {Xt}t∈Z
are dependent or independent. Various types of INAR(1) models have been introduced
in the literature. For example, see the survey by [30], [19], [25] and [16]. The Binomial
thinning INAR(1) with Poisson α-fold zero modified geometric innovations was studied
in [26].

Overdispersion is an important concept in the analysis of discrete data. The Poisson
integer-valued autoregressive process is not suitable for modeling overdispersed counts
because the Poisson distribution is equidispersion. Various methods have been proposed to
overcome it. One approach is to change the distribution of innovation. Another suggestion
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to deal with overdispersion is to change the type of thinning operator, which often changes
the distribution of innovation. The third approach is to change the marginal distribution
of the process. In [31, 32] it was shown that a reason for overdispersion is the presence
of a positive correlation between the monitored events. As a result, several authors have
proposed new models which considered overdispersed series [1, 2, 4, 8, 18, 14, 20, 21].
An INAR(1) process for modeling count time series with equidispersion, underdispersion
and overdispersion was studied in [9]. Two INAR(1) processes with double Poisson, and
generalized Poisson innovations for modeling non-negative integer-valued time series with
equidispersion, underdispersion, or overdispersion were studied [6]. The use of mixed
Poisson distributions is recommended to treat overdispersion in the count time series data.
The class of overdispersed INAR(1) processes with marginals belonging to a general class
of mixed Poisson distributions was studied in [5].

The cumulative Delaporte distribution is a discrete probability distribution that can be
considered the convolution of a negative binomial distribution with a Poisson distribution.
This distribution has three parameters α, β and λ, and introduced by Pierre Delaporte
[12]. For the special value of parameters this distribution reduces to Poisson, Polya, or
geometric distribution.

The survey of seasonal time series of counts can be seen in some papers. [17] used
the Poisson INAR(1) model with explanatory variables through autoregressive coefficient
and Poisson parameter, proposed by [10], and modeled the seasonality by selecting a
mix of sine and cosine terms to be the explanatory variables. Also, [34] generalized the
random coefficient INAR(1) model by using covariables in the parameters of innovations
to explain seasonality. [35] introduced an INAR(1) model extended by adding a second
independent non-stationary series with varying mean. [7] captured the seasonality by
connecting the time series variables with the corresponding seasonal period based on the
Poisson INAR(1) model. [11] Proposed a first order INAR process with seasonally varying
autocorrelation parameters and intra-sensonality dependent shocks.

This first-order seasonal INAR process with seasonal period s (INAR(1)s) has a more
straightforward model structure and less parameters to estimate. However, it is not
appropriate for modeling seasonal time series with overdispersion. This suggested that to
model this kind of time series, other thinning operator and distribution may be needed
to be taken into consideration. [29] introduced a seasonal geometric INAR(1) process
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based on the negative binomial thinning operator. The main objective of this paper is
to propose a new stationary seasonal integer-valued autoregressive model based on the
binomial thinning operator with Delaporte marginal distribution. We denote this model
by DELINAR(1)s. The motivation for such a process arises from its potential in the
modeling and analysis of non-negative integer-valued time series with a seasonal structure
in the overdispersed situation.

The rest of the article is organized as follows. The model is introduced in Section
2 and the transition probabilities of the model based on marginal and innovation mass
function is derived. Also, some of the statistical and conditional properties of the model
are obtained. Section 3 is devoted to estimation methods for estimating the unknown
parameters of the model. Section 4 discusses some theoretical results for point forecasts.
Section 5 discusses some simulation results for the estimation methods. In Section 6, the
model is applied to a real set of data. Finally, we conclude in Section 7.

2. The Model and Its Innovation Term

In this section, we study structural properties of DELINAR(1)s process, such as, the
distributions of the marginal and innovation, mean and variance of these distributions,
autocovariance function, conditional expectation and conditional variance of the marginal
random variable, and transition probabilities.

2.1. The Delaporte distribution.

Definition 2.1. The Delaporte distribution is a discrete valued distribution with proba-
bility generating function (pgf)

(2.1) GX(t) = e−λ(1−t)

(
1

1 + β(1− t)

)α

,

where |t| ≤ 1, λ > 0, α, β > 0. The relation (2.1) shows that it is the convolution of a
negative binomial and Poisson random variables (see, [12] and [33]). The probability mass
function (pmf) corresponding to (2.1) is given by

f(x) = p(X = x) =
x∑

i=0

Γ(i+ α)e−λλx−iβi

Γ(α)i!(1 + β)α+i(x− i)!
,

for x = 0, 1, 2, . . . and α, β, λ > 0. This distribution is denoted by Del(λ, α, β).
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Differentiating from (2.1) with respect to t, it is easy to show

µx = E(X) = λ+ αβ and σ2
x = V ar(X) = λ+ αβ(1 + β).

Thus, the dispersion index, which is the variance-to-mean ratio, is given by

Ix =
σ2
X

µx

= 1 +
αβ2

λ+ αβ
.

It follows that Delaporte distribution shows overdispersion.

2.2. The first-order seasonal non-negative Delaporte INAR model.

Definition 2.2. A discrete-time non-negative integer-valued stochastic process {Xt} is
said to be a new seasonal Delaporte INAR process with seasonal period s (DELINAR(1)s)

based on the binomial thinning operator if it satisfies the following equation:

(2.2) Xt = ρ ◦Xt−s + εt, t = 0, 1, 2, . . .

where s ∈ N denotes the seasonal period and {Xt} is a sequence of random variables with
Delaporte distribution which previously introduced in Definition 2.1.

Note that when s = 1, this model degenerates into the Delaporate first-order INAR
model, denoted by DELINAR(1), so in this paper, we let s ≥ 2. It can also be said
that the (DELINAR(1)s) process consists of s mutually independent INAR(1) processes
with the same autoregressive coefficient ρ and the same innovation distribution. Let
X

(r)
t := Xts+r, t ∈ N0, r = 1, 2, . . . , s, then it is easy to see that for all r = 1, 2, . . . , s, the

process {X(r)
t } satisfies the DELINAR(1) model

X
(r)
t = ρ ◦X(r)

t−1 + ε
(r)
t

where the innovation sequence ε
(r)
t is defined by ε

(r)
t := εts+r. The independence of

the stochastic processes {X(r)
t }, clearly follows from the independences of the innovation

sequences ε
(r)
t , and the counting processes involved in the thinning operators. The de-

composition implies that the (DELINAR(1)s) process {Xt} is a so-called s-step Markov
chain, that is, for all t ≥ s,

P (Xt = xt|Xt−1 = xt−1, . . . , X0 = x0) = P (Xt = xt|Xt−s = xt−s),

for any x0, x1, . . . , xn ∈ N0.
The distribution of the innovation sequence {εt} is given by the following proposition.



A SEASONAL DELAPORTE INAR(1) MODEL 21

Proposition 2.3. The random variable εt can be represented as εt = Y1 + Y2 where
Y1 ∼ Po(λ(1− ρ)) and Y2 are α-fold convolutions of zero-modified geometric distribution.

Proof. Consider the first-order seasonal non-negative Delaporte INAR model (DELINAR(1)s)

where Xt satisfies (2.2), If GX(z) = E(zX) is the probability generating function of X,
and Φ(z) = G(1− z) is the alternative probability generating function (apgf), the model
defined in (2.2) in terms of apgf can be given as

ΦXt(z) = ΦXt−s(ρz)Φεt(z).

Under the stationarity of the process {Xt}, we have

Φε(z) =
ΦX(z)

ΦX(ρz)
= e−λ(1−ρ)z

[
ρ+ (1− ρ)

1

1 + βz

]α
Therefore, the innovation sequence {εt} has convolution structure εt = Y1+Y2 where Y1 ∼
Po(λ(1− ρ)) and Y2 are α-fold convolutions of zero-modified geometric distribution. □

Using Proposition 2.3, since Y1 ∼ Po(λ(1 − ρ)) and Y2 =
∑α

i=1 Zi, where Zi ∼
ZMG(p, p0) and the fact that Y1 and Y2 are independent variables, we can obtained
that the expectation and the variance of the random variable εt are

µε := E(εt) = (1− ρ)(λ+ αβ) = (1− ρ)µX ,

and

σ2
ε := V ar(εt) = (1− ρ)[λ+ αβ(1 + (1 + ρ)β)] = (1− ρ2)σ2

X − ρ(1− ρ)µX .

Also, we can derive the s-step transition probabilities of the (DELINAR(1)s) process by
Proposition 1 and the s-step Markov property. It follows that

P (Xt = xt|Xt−s = xt−s) = P (ρ ◦Xt−s + εt = xt|Xt−s = xt−s).

Now, Bρ
Xt−s

:= ρ ◦Xt−s|Xt−s ∼ Binomial(Xt−s, ρ), also εt is independent of Xt−s and is a
convolution of two random variables with distribution of P(λ,ρ) ∼ Po(λ(1− ρ)) and α-fold
convolutions of zero-modified geometric (ZMG) with parameters p = 1

1+β
and p0, where

p0 =
1+ρβ
1+β

is probability mass at zero. Therefore, it can be written as

P (Xt = xt|Xt−s = xt−s) = P (Bρ
Xt−s

+ P(λ,ρ) + αFZMG(p,p0) = xt)

=
xt∑

m=0

P (αFZMG(p,p0) = m)

min{xt−m,xt−s}∑
d=0

p(Bρ
Xt−s

= d)P (P(λ,ρ) = xt −m− d),(2.3)
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where,

P (P(λ,ρ) = u) =
e−λ(1−ρ)(λ(1− ρ))u

u!
, u = 0, 1, 2, . . .

P (Bρ
Xt−s

= d) =

(
Xt−s

d

)
ρd(1− ρ)xt−d, d = 0, 1, 2, . . . , Xt−s

and αFZMG(p,p0) =
α∑

i=1

Zi, such that

p(Zi = k) =

p0 k = 0

(1− ρ) βk

(1+β)k+1 k = 1, 2, . . .

where p0 = ρ+ (1− ρ) 1
1+β

is probability mass at zero.

Proposition 2.4. Suppose X(k+h)s+j, Xks+i satisfy the process (2.2), and h ∈ N, k ∈
N0, i, j = 1, 2, . . . , s. Then we have following results:

(i) The conditional expectation of X(k+h)s+j given Xks+i is

E(X(k+h)s+j|Xks+i) =

µx i ̸= j

ρhXks+i + (1− ρh)µx i = j

and when h → ∞, the above conditional expectation approaches to µx, which is the
unconditional mean.

(ii) The conditional variance of X(k+h)s+j given Xks+i is

V ar(X(k+h)s+j|Xks+i) =σ2
X , i ̸= j

ρh(1− ρh)Xks+i +
1−ρ2h

1−ρ2
σ2
ε + ρ(1− ρ)

[
1−ρ2(h−1)

1−ρ2
− ρh−1(1−ρh−1)

1−ρ

]
µx, i = j,

where σ2
ε := V ar(εt) = (1− ρ)[λ+ αβ(1 + (1 + ρ)β)] = (1− ρ2)σ2

X − ρ(1− ρ)µX .
It is clear that when h → ∞, V ar(X(k+h)s+j|Xks+i) → σ2

X , which is the uncondi-
tional variance.

(iii) The autocovariance of the process is

Cov(X(k+h)s+j, Xks+i) =

0, i ̸= j

ρhσ2
x, i = j,
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Clearly, when i = j, the autocorrelation function ρ(hs) = ρh decreases exponentially as
h → ∞. Note that µX and σ2

X are the unconditional mean and variance of the random
variable Xn.

Proof. see the appendix. □

Proposition 2.5. If ρ ∈ [0, 1), the unique stationary marginal distribution of model (2.2)
can be expressed in terms of the innovation process {εt} as

Xt
d
=

∞∑
k=0

ρk ◦ εt−ks = εt +
∞∑
k=1

εt−ks∑
j=1

Yt,k,j, t ∈ N0

where d
= stands for equality in distribution. For all t ∈ N0, the Bernoulli variables

{Yt,k,j,}k,j≥1 being mutually independent and independent of the innovation process with
E(Yt,k,j,) = ρk for all k, j ≥ 1. Also, the infinite series is understood as the limit in
probability of the finite sum.

Proof. see the appendix. □

3. Estimation methods

Let us assume that we have n observations x1, x2, . . . , xn from DELINAR(1)s process.
In the DELINAR(1)s model we have four parameters. As we know, α takes non-negative
integer values, so for simplicity of calculations, we assume that it is known, then after
estimating other parameters of the model, we fit model with different values of α to choose
the most optimal one. Therefore, three parameters ρ, λ and β have to be estimated. Three
methods will be considered in this section, Yule-Walker method (YW), conditional least
squares method (CLS), and conditional maximum likelihood method (CML).

3.1. Yule-Walker estimation (YW). Let X1, . . . , Xn be a sample of process (2.2). The
sample mean is X̄ = 1

n

∑n
t=1Xt, the sample variance is S2 = 1

n−1

∑n
t=1(Xt− X̄)2, and the

sample autocorrelation function with lag 1 is

ρ̂1 =

∑n
t=s+1(Xt − X̄)(Xt−s − X̄)∑n

t=1(Xt − X̄)2

Thus the Yule-Walker (YW) estimate of ρ is given by

ρ̂YW =

∑n
t=s+1(Xt − X̄)(Xt−s − X̄)∑n

t=1(Xt − X̄)2
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and µ̂YW = X̄. Since E(Xt) = λ + αβ and V ar(Xt) = λ + αβ(1 + β), the Yule-Walker
estimators of λ and β are

β̂YW =

√
S2 −X

α
and λ̂YW = X̄ − α

√
S2 −X

α
.

3.2. Conditional least squares estimation (CLS). In this subsection, we use the
conditional least squares method and obtain the estimators for the parameters ρ, µ and
σ2. We obtain the conditional least squares estimations in two steps [22]. First, we apply
the ordinary conditional least squares for estimation of the parameters ρ and µ. The
ordinary conditional least squares for the model is given by

S1CLS =
n∑

t=s+1

e21t =
n∑

t=s+1

(Xt − E[Xt|Xt−s])
2

=
n∑

t=s+1

(Xt − ρXt−s − (1− ρ)(λ+ αβ))2.

Therefore, by taking partial derivative with respect to ρ and µ, after some calculation,
the conditional least squares estimators of the parameters ρ and µ are given by

ρ̂CLS =
(n− s)

∑n
t=s+1XtXt−s −

∑n
t=s+1Xt

∑n
t=s+1Xt−s

(n− s)
∑n

t=s+1X
2
t−s − (

∑n
t=s+1Xt−s)2

,

µ̂cls =

∑n
t=s+1Xt − ρ̂cls

∑n
t=s+1 Xt−s

(n− s)(1− ρ̂cls)
.

For the estimation of the parameter σ2, in step two, let Vt = (Xt − E(Xt|Xt−s))
2 =

(Xt − ρXt−s − (1 − ρ)µ)2 be a random variable. It is easy to show that E (Vt|Xt−s) =

V ar(Xt|Xt−s) = ρ(1 − ρ)Xt−s + (1 − ρ2)σ2 − ρ(1 − ρ)µ. Using Vt and its conditional
expectation, we have a new sum of squares that is given by

S2CLS(σ
2) =

n∑
t=s+1

(Vt − E[Vt|Xt−s])
2 =

n∑
t=s+1

(Vt − ρ(1− ρ)(Xt−s − µ)− (1− ρ2)σ2)2.

By replacing the estimators of ρ and µ from previous step in S2CLS(σ
2) and minimizing

S2CLS(σ
2) with respect to σ2, we have

σ2
cls =

n∑
t=s+1

(Xt − ρ̂CLSXt−s − (1− ρ̂CLS) µ̂cls)
2 − ρ̂CLS (1− ρ̂CLS)

n∑
t=s+1

(Xt−s − µ̂cls)

(n− s)(1− ρ̂2cls)
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At last, since under the stationary condition, we have µ = E(Xt) = λ + αβ and σ2 =

V ar (Xt) = λ + αβ (1 + β), the conditional least squares estimators for the parameters
λ, β are given by

β̂cls =

√
σ̂2
cls − µ̂cls

α
, λ̂cls = µ̂cls − αβ̂cls.

3.3. Conditional maximum likelihood estimation (CML). Suppose X1, X2, . . . , Xn

be a random sample from a stationary DELINAR(1)s process with parameters ρ, λ and
β. The conditional log-likelihood function is given by

CL(ρ, λ, β) =
n∑

t=s+1

logP (Xt = j|Xt−s = i)

where P (Xt = j|Xt−s = i) is defined in (2.3). The conditional maximum likelihood
estimators are obtained by maximizing CL(ρ, λ, β). Since derivative of CL(ρ, λ, β) is a
nonlinear function, the maximum likelihood estimate of parameters must be computed
using numerical methods.

4. Forecasting

In this section, forecasting a future value Xn+h, h ∈ N based on the past informa-
tion up to time n is expressed. The distribution of Xn+h based on the definition of the
DELINAR(1)s model can be represent as

(4.1) Xn+h
d
= ρk ◦Xn+h−qs +

q−1∑
j=0

ρj ◦ εn+h−js

where q :=
⌈
h
s

⌉
, with ⌈x⌉ := min{n ∈ N|x ≤ n}. According to equation (4.1), the dis-

tribution of h-step ahead forecasting has a very complicated form, so helping conditional
expectation E(Xn+h|Fn), we get the h-step ahead forecasting. E(Xn+h|Fn) given by

E(Xn+h|Fn) = E(ρq ◦Xn+h−qs +

q−1∑
j=0

ρj ◦ εn+h−js|Fn)

= ρqXn+h−qs +

q−1∑
j=0

ρj(1− ρ)µx

= ρq(Xn+h−qs − µ) + µ,

where µx = λ+ aβ and Fn is the information set up to time n.
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Some properties of the h-step ahead conditional expectation for DELINAR(1)s model
are given in the following proposition:

Proposition 4.1. Let {Xn} be a stationary DELINAR(1)s process and n, h ∈ N . Then:

(i) E(Xn+h|Fn) = ρq(Xn+h−qs − µx) + µx

(ii) V ar(Xn+h|Fn) = ρq(1− ρq)Xn+h−qs +
1−ρ2q

1−ρ2
σ2
ε +

[
(1− ρq)−

(
1−ρ2q
1+ρ

)]
µx

(iii) lim
h→∞

E(Xn+h|Fn) = µx

(iv) lim
h→∞

V ar(Xn+h|Fn) = σ2
x

where h ∈ N and q := ⌈h
s
⌉.

So, a forecast X̂n+h, h ∈ N, based on the sample X1, X2, . . . , Xn, is obtained by

X̂n+h = ρ̂q(Xn+h−qs − µ̂x) + µ̂x

where ρ̂, µ̂x are estimators for ρ and µ, respectively.

Proof. Let h ∈ N and q : =
⌈
h
s

⌉
.

(i) Using (4.1), E (ρ ◦X|X) = ρX, where X is a non-negative integer-valued random
variable, and the fact that εn+h−js is independent of the Fn for all j = 0, 1, . . . , q −
1, E(Xn+h|Fn) is computed as follows:

E(Xn+h|Fn) = E

(
ρq ◦Xn+h−qs +

q−1∑
j=0

ρj ◦ εn+h−js|Fn

)

= ρqXn+h−qs +

q−1∑
j=0

ρj (1− ρ)µx

= ρq(Xn+h−qs − µx) + µx,

where µx = λ+ αβ.
(ii) Using (4.1), V ar (ρ ◦X|X) = ρ(1− ρ)X, where X is a non-negative integer-valued

random variable, and the fact that εn+h−js is independent of the Fn for all j = 0, 1, . . . , q−
1, V ar(Xn+h|Fn) is computed as follows

V ar(Xn+h|Fn) = V ar

(
ρq ◦Xn+h−qs +

q−1∑
j=0

ρj ◦ εn+h−js|Fn

)
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= V ar (ρq ◦Xn+h−qs| Xn+h−qs) + V ar
( q−1∑

j=0

ρj ◦ εn+h−js

)

= ρq(1− ρq)Xn+h−qs +

q−1∑
j=0

V ar(ρj ◦ εn+h−js)

= ρq(1− ρq)Xn+h−qs +
1− ρ2q

1− ρ2
σ2
ε +

[
(1− ρq)−

(1− ρ2q

1 + ρ

)]
µx.

Because we have

V ar(ρj ◦ εn+h−js) = E
(
ρj ◦ εn+h−js

)2 − E2(ρj ◦ εn+h−js)

= ρ2jE(ε2) + ρj
(
1− ρj

)
E(ε)− ρ2jE2(ε)

= ρ2j
(
E(ε2)− E2(ε)

)
+ ρj

(
1− ρj

)
E(ε)

= ρ2jσ2
ε + ρj(1− ρj)E(ε),

where

E(ε) = (1− ρ)µx,
σ2
ε = V ar(ε) = (1− ρ2) σ2

X − ρ(1− ρ)µX and
∑q−1

j=0 ρ
2j = 1−ρ2q

1−ρ2
.

(iii) and (iv) using the results given in (i) and (ii), the following limits are obtained:

lim
h→∞

E(Xn+h|Fn) = lim
h→∞

[q(Xn+ h− qs− µx) + µx] = µx,

lim
h→∞

V ar(Xn+h|Fn) = lim
h→∞

[
ρq(1− ρq)Xn+h−qs +

1− ρ2q

1− ρ2
σ2
ε +

[
(1− ρq)−

(1− ρ2q

1 + ρ

)]
µx

]
=σ2

x.

□

5. Monte Carlo simulation study

At the beginning of this section, we simulate a sample of the new process with seasonal
period s = 12 and ρ = 0.8, β = 3 and λ = 1. Figure 1 shows the sample path and
the ACF of model as can be seen, the ACF of model is zero except at lags that are
multiples of s. Also, the ACF, ρ(k), decays exponentially with lag k All simulations
have been performed in R programming. We generate the sample n ∈ {200, 400, 800}
from the DELINAR(1)s process with s = 12, and the number of replications for each n

is 1000. In this simulation, we set (a) (ρ, β, λ) = (0.2, 3, 1.5), (b) (ρ, β, λ) = (0.5, 2, 1)
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and (c) (ρ, β, λ) = (0.8, 1.5, 4). Tables 1, 2 and 3 show the results of this simulation in
terms of bias and mean square error (MSE) of the estimators obtained from the three
procedure method estimation. These tables show that the values of the bias and mean
square error of the estimates of the parameters go to zero as the sample size increases
for all cases. As can be seen from the tables, the conditional least square and the Yule-
Walker methods show similar mean square behaviors. However, the conditional maximum
likelihood estimators have the best implementation on bias and MSE compared with the
Yule-Walker and the conditional least square estimators. It is because that both bias
and MSE for the conditional maximum likelihood estimators are smaller than those for
the other methods. Since the bias of ρ̂ and β̂ are negative for all estimation methods, so
they tend to underestimate of the parameters, and since the bias of the estimators of λ̂ is
positive for all estimation methods, so it tends to overestimate the parameter.
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Figure 1. sample path of DELINAR(1)s process and its sample ACF
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Table 1. Results of simulation: Bias and MSE (in parantheses) of esti-
mators of parameters for (ρ, β, λ) = (0.2, 3, 1.5).

n ρ̂YW ρ̂CLS ρ̂CML β̂YW β̂CLS β̂CML λ̂YW λ̂CLS λ̂CML

200 −0.0142 −0.0023 0.0008 −0.0106 −0.0320 −0.0159 0.0075 0.0492 0.0176

(0.0047) (0.0050) (0.0027) (0.0956) (0.1013) (0.0766) (0.2685) (0.2804) (0.1708)

400 −0.0074 −0.0013 0.0000 −0.0051 −0.0131 −0.0082 −0.0003 0.0155 0.0060

(0.0025) (0.0026) (0.0013) (0.0474) (0.0498) (0.0374) (0.1344) (0.1424) (0.0870)

800 −0.0059 −0.0029 −0.0016 −0.0057 −0.0105 −0.0067 0.0095 0.0196 0.0119

(0.0013) (0.0013) (0.0007) (0.0262) (0.0268) (0.0189) (0.0759) (0.0774) (0.0465)

Table 2. Results of simulation: Bias and MSE (in parantheses) of esti-
mators of parameters for (ρ, β, λ) = (0.5, 2, 1).

n ρ̂YW ρ̂CLS ρ̂CML β̂YW β̂CLS β̂CML λ̂YW λ̂CLS λ̂CML

200 −0.0385 −0.0086 −0.0029 −0.0235 −0.0461 −0.0118 0.0460 0.0953 0.0272

(0.0054) (0.0044) (0.0019) (0.0808) (0.0908) (0.0660) (0.2459) (0.2779) (0.1555)

400 −0.0231 −0.0081 −0.0034 −0.0278 −0.0367 −0.0163 0.0453 0.0645 0.0254

(0.0026) (0.0022) (0.0008) (0.0426) (0.0451) (0.0314) (0.1278) (0.1353) (0.0725)

800 −0.0109 −0.0037 −0.0015 −0.0130 −0.0177 −0.0068 0.0142 0.0233 0.0017

(0.0012) (0.0011) (0.0004) (0.0209) (0.0214) (0.0147) (0.0596) (0.0608) (0.0332)

Table 3. Results of simulation: Bias and MSE (in parantheses) of esti-
mators of parameters for (ρ, β, λ) = (0.8, 1.5, 4).

n ρ̂YW ρ̂CLS ρ̂CML β̂YW β̂CLS β̂CML λ̂YW λ̂CLS λ̂CML

200 −0.0585 −0.0103 −0.0030 −0.0654 −0.1241 −0.0159 0.1532 0.2602 0.0461

(0.0057) (0.0022) (0.0005) (0.1936) (0.2676) (0.1088) (0.8151) (1.2005) (0.4488)

400 −0.0326 −0.0081 −0.0021 −0.0594 −0.0888 −0.0111 0.1120 0.1768 0.0180

(0.0021) (0.0010) (0.0002) (0.1165) (0.1334) (0.0555) (0.4940) (0.5645) (0.2416)

800 −0.0169 −0.0046 −0.0009 −0.0402 −0.0502 −0.0100 0.0907 0.1130 0.0318

(0.0008) (0.0005) (0.0001) (0.0625) (0.0676) (0.0269) (0.2486) (0.2673) (0.1130)
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6. Real data example

The model proposed in Section 2, is now used to model and forecast the counts of
claims of short-term disability benefits by month. The data are included is tsinteger
package and can be taken from http://rdrr.io>github>portriaota>tsinteger. This
data consists the male claimants, between 35 and 54 ages, work in the logging industry
and reported their claim to the Richmond, BC Workers Compensation Board. In the
data set, only claimants whose injuries were due to cuts and lacerations were consisted.
The 120 observation was gathered from January 1985 to December 1994. [15], [35] and
[7] were formerly analyzed this data set.

The sample mean and the sample variance of data are 6.13 and 11.80, respectively.
The Fisher index of dispersion of the data set is 1.92. We conclude that the data set
has overdispersed property. In Figure 2, the sample path of time series, the sample au-
tocorrelation function (ACF) and partial autocorrelation function (PACF) are exhibited.
The geometrical decrease pattern with a seasonal period of 12 can be seen in ACF plot
and detects that there is a time series with serial correlations behaviors. According to
the plots, it is clear that the data has overdispersion and seasonality property, so we
are encouraged to choose our DELINAR(1)12 model as a candidate model, also we will
consider the PINAR(1), DElINAR(1) and INAR(1)12 models for comparison. The data
set will be divided into two parts. We use the first 110 observations to model the series,
also for forecasting purposes, the last 10 observations are considered.

Alpha takes non-negative integer values, so we fitted model to the data with values of 1,
2 and 3 for α by CML approach to select the best one according to the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). The results are presented
in Tables 4. This table also shows the CML estimates (with MSE in parentheses) of the
parameters of the DELINAR(1)12 process. According to sensitivity analysis, it seems
that the AIC increases slightly as the α value increases. So we considered α = 1 for
model.

Table 5, the CML estimates (with corresponding mean square errors in parentheses) of
parameters for fitting the model DELINAR(1)12 and the other models, AIC and BIC are
given. For the model DELINAR(1)12 the values of the AIC and BIC are smaller than the
values of other models.

http://rdrr.io>github>portriaota>tsinteger
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Table 4. Sensitivity analysis to select best value for α.

α ρ β λ AIC BIC

1 0.2285(0.0104) 2.7345(0.2032) 3.5575(0.4816) 500.21 508.31

2 0.2299(0.0059) 1.9001(0.2549) 2.7492(0.6240) 500.54 508.64

3 0.2097(0.0076) 1.5266(0.0238) 1.9548(0.0315) 500.91 509.01

Then, the suitable model by CML estimation is

Xt = 0.2285 ◦Xt−12 + εt

and Xt follows a Del(3.5575, 1, 2.7345) and εt is a convolution of two random variables with
distribution of Poisson(2.7446) and zero-modified geometric with parameters p = 0.2677,
and p0 = 0.4350. In Figure 3, the observed, fitted and forecasting values are shown, with
black, red and blue color lines, respectively. Figure 4 shows ACF and PACF of residuals,
as can be seen, serial correlations are still observed in the residuals.

Table 5. Estimated parameters (MSE in parentheses), AIC and BIC.

Model CMLestimate CLSestimate AIC BIC

PINAR(1) ρ̂ = 0.5705(0.0005) ρ̂ = 0.5651(0.0075) 545.80 551.20

λ̂ = 2.7059(0.0188) λ̂ = 2.7356(0.3199)

INAR(1)12 ρ̂ = 0.2459(0.004) ρ̂ = 0.2667(0.0098) 532.09 537.49

λ̂ = 4.6769(0.0411) λ̂ = 4.5389(0.4201)

DELINAR(1) ρ̂ = 0.4436(0.0016) ρ̂ = 0.5651(0.0070) 527.08 535.18

β̂ = 1.2768(0.0077) β̂ = 1.6831(0.1000)

λ̂ = 3.6945(0.1148) λ̂ = 2.9253(0.3223)

DELINAR(1)12 ρ̂ = 0.2285(0.0104) ρ̂ = 0.2667(0.0100) 500.21 508.31

β̂ = 2.7345(0.2032) β̂ = 2.5089(0.3197)

λ̂ = 3.5575(0.4816) λ̂ = 3.6811(0.2911)
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Figure 2. The time series, ACF and PACF of the claims series from 1985
to 1994.
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Figure 4. The ACF and PACF of residuals.

7. Conclusions

In this paper, we proposed a new seasonal Delaporte integer-valued autoregressive
model with the binomial thinning operator. This model is appropriate for the seasonal
and overdispersed data. We derive main properties of this model, consider three esti-
mators for the model parameters (YW, CLS and CML) and compare these methods via
simulation study. The results show that the Yule-Walker and conditional least square
methods have similar performances, but the conditional maximum likelihood estimators
are better than others. Therefore, we propose conditional maximum likelihood estimators
for the parameters of the DELINAR(1)12. We also discuss the forecasting values of the
model by conditional expectation method. Finally, we fitted the model to real data set.
The PINAR(1), INAR(1)12 and DELINAR(1) models are also used to fit the same data
for comparison. The result shows that based on the AIC, BIC criterion, our model is
better than compared to the other INAR models. As part of future research, it would be
interested to extend the model to autoregressive order p > 1. Also, according to the ACF
of residuals shown in Figure 4, this model does not capture serial correlation. Therefore,
the suggestion of a new model that can capture the both seasonal and serial correlation
is necessary.

appendix

Proof of Proposition 2.4. Let X(k+h)s+j := X
(j)
k+h and Xks+i := X

(i)
k . Then we have
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(i): When i ̸= j, X
(j)
k+h and X

(i)
k are mutually independent, so the conditional ex-

pectation equals to the unconditional expectation µ. When i = j, we can derive
that

E
(
X(k+h)s+j | Xks+i

)
= E

(
X

(j)
k+h | X(j)

k

)
= E

(
ρ ◦X(j)

k+h−1 + ε
(j)
k+h | X(j)

k

)
= ρE

(
X

(j)
k+h−1 | X

(j)
k

)
+ E

(
ε
(j)
k+h

)
= ρ2E

(
X

(j)
k+h−1 | X

(j)
k

)
+ (ρ+ 1)[(1− ρ)µ]

= · · ·

= ρhE
(
X

(j)
k | X(j)

k

)
+
(
ρh−1 + · · ·+ ρ+ 1

)
[(1− ρ)µ]

= ρhX
(j)
k +

1− ρh

1− ρ
[(1− ρ)µ]

= ρhX
(j)
k +

(
1− ρh

)
µ.

From the result, we can prove that limh→∞ E(X(k+h)s+j|Xks+i) = µ.
(ii): When i ̸= j, X

(j)
k+h and X

(i)
k are mutually independent, so the conditional

variance equals to the unconditional variance . When i = j, we can derive that

Var
(
X(k+h)s+j | Xks+i

)
=Var

(
X

(j)
k+h | X(j)

k

)
=Var

(
ρ ◦X(j)

k+h−1 + ε
(j)
k+h | X(j)

k

)
=Var

(
ρ ◦X(j)

k+h−1 | X
(j)
k

)
+Var

(
ε
(j)
k+h | X(j)

k

)
=E

((
ρ ◦X(j)

k+h−1

)2
| X(j)

k

)
−
[
E
(
ρ ◦X(j)

k+h−1 | X
(j)
k

)]2
+Var

(
ε
(j)
k+h

)
=ρ2E

[(
ρ ◦X(j)

k+h−1

)2
| X(j)

k

]
+ ρ(1− ρ)E

(
X

(j)
k+h−1 | X

(j)
k

)
− ρ2

[
E
(
X

(j)
k+h−1 | X

(j)
k

)]2
+ σ2

ε

= · · ·

=ρ2h Var
(
X

(j)
k | X(j)

k

)
+ ρ(1− ρ)

[
ρ2(h−1)E

(
X

(j)
k | X(j)

k

)
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+ · · ·+ E
(
X

(j)
k+h−1 | X

(j)
k

)]
+
(
ρ2(h−1) + · · ·+ ρ2 + 1

)
σ2
ε ,

where V ar(X
(j)
k |X(j)

k ) = 0 and (ρ2(h−1) + ·+ ρ2 + 1)σ2
ε = 1−ρ2h

1−ρ2
σ2
ε , also the second

item of the above formula given by

ρ(1− ρ)
[
ρ2(h−1)E

(
X

(j)
k | X(j)

k

)
+ ρ2(h−2)E

(
X

(j)
k+1 | X

(j)
k

)
+ · · ·+

ρ2E
(
X

(j)
k+h−2 | X

(j)
k

)
+ E

(
X

(j)
k+h−1 | X

(j)
k

)]
= ρ(1− ρ)

{
ρ2(h−1)X

(j)
k + ρ2(h−2)

[
ρX

(j)
k +

1− ρ

1− ρ
µε

]
+ · · ·+ ρ2

[
ρh−2X

(j)
k +

1− ρh−2

1− ρ
µε

]
+

[
ρh−1X

(j)
k +

1− ρh−1

1− ρ
µε

]}
= ρ(1− ρ)

{[
ρ2h−2 + ρ2h−3 + · · ·+ ρh−1

]
X

(j)
k

+
[
ρ2(h−2)(1− ρ) + · · ·+ ρ2

(
1− ρh−2

)
+
(
1− ρh−1

)]
µ
}

= ρ(1− ρ)
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(
1− ρh

)
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X
(j)
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[(
1− ρ2(h−1)

(1− ρ2
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ρh−1
(
1− ρh−1

)
1− ρ

]
µ

}
.

Hence, when i = j, we have:

V ar(X(k+h)s+j|Xks+i) =
1− ρ2h

1− ρ2
σ2
ε + ρh(1− ρh)Xj

k

+ ρ(1− ρ)
[1− ρ2(h−1)

1− ρ2
− ρh−1(1− ρh−1)

1− ρ

]
µ,

where σ2
ε = V ar(εt) = (1− ρ)[λ+αβ(1+ (1+ ρ)β)] = (1− ρ2)σ2

X − ρ(1− ρ)µX . It
is clear that the following limit is obtained: limh→∞ V ar(X(k+h)s+j|Xks+i) = σ2

X .
(iii): When i ̸= j, X

(j)
k+h and X

(i)
k are mutually independent, so the covariance equals

to 0. When i = j, we can derive that

Cov
(
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= E

E

x
(j)
k−1∑
p+1

Yp | X(j)
k+h−1

X
(j)
k

− ρE
(
X

(j)
k+h−1

)
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)
= E

(
X

(j)
k+h−1X

(j)
k E (Yp)

)
− ρE

(
X

(j)
k+h−1

)
E
(
X

(j)
k

)
= ρCov
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(
X
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Using the result, we can prove that the ACF of the process ρ(hs) = ρh decays
exponentially as h → ∞.

Proof of Proposition 2.5. Define the random variable Zt,n as

Zt,n =
n∑

k=0

ρk ◦ εt−ks = εt +
n∑

k=1

εt−ks∑
j=1

Yt,k,j

Where the Bernoulli variables {Yt,k,j,}k,j≥1 being mutually independent and independent
of the innovation process with E(Yt,k,j, ) = ρk for all k, j ≥ 1 and t ∈ N0. If µε and
σ2
ε represent, respectively, the mean and variance of the innovation sequence, by using

properties (iv) and (v) of the thinning operator, see [28], we obtain for all 0 < n < m,

E
[ m∑
k=n

ρk ◦ εt−ks

]
=

m∑
k=n

ρkµε ≤
ρn

1− ρ
µε

V ar
[ m∑
k=n

ρk ◦ εt−ks

]
=
∑

(ρ2kσ2
ε + ρk(1− ρk)µε ≤

ρ2n

1− ρ2
σ2
ε +

ρn

1− ρ
µε

Since ρ ∈ [0, 1), the right-hand sides in above equations tends to 0 as n → ∞. This
implies that the sequence {Zt,n} forms a Cauchy sequence in mean square sense and
hence in probability. Therefore for all t ∈ N0, there is a random variable Zt , which is the
limit on the right-hand side in the equation, such that Zt,n

p−→ Zt as n → ∞. Let the non-
negative integer-valued stochastic process {Xt} satisfy (2.2). By successively substituting
we obtain

Xt = ρ ◦Xt−s + εt = ρ ◦ (ρ ◦Xt−2s + εt−s) + εt
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Using that ρ ◦ (γ ◦X)
d
= (ργ) ◦X and ρ ◦ (X + Y )

d
= ρ ◦X + ρ ◦ Y for any ρ, γ ∈ [0, 1]

and any independent pair of non-negative integer-valued random variable X,Y . see [3],
we have the following equality in distribution:

Xt
d
= ρ2 ◦Xt−2s + ρ ◦ εt−s + εt = ρ2 ◦Xt−2s + Zt,1,

Since εt−s and Xt−2s are independent. By induction, for all n ∈ N we have

Xt
d
= ρn ◦Xt−ns +

n−1∑
k=0

ρk ◦ εt−ks = ρn ◦Xt−ns + Zt,n−1,

If µx and σ2
x represent, respectively, the mean and variance of a stationary solution {Xt}

we obtain {Xt}

E[ρk ◦Xt−ns] = ρnµx

V ar[ρk ◦Xt−ns] = ρ2nσ2
x + ρn(1− ρn)µx

Since ρ ∈ [0, 1) , we obtain

lim
n→∞

E[ρk ◦Xt−ns] = lim
n→∞

V ar[ρk ◦Xt−ns] = 0

Therefore ρn ◦Xt−ns
P−→ 0 as n → ∞, and thus Zt,n

d−→ Xt as n → ∞ for all t ∈ N0, where
d−→ denotes convergence in distribution. Hence Xt

d
= Zt for all t ∈ N0, which means the

uniqueness of the stationary marginal solution. At last, it is showed that the distribution
of the process {Zt}t∈N0 is the solution of the Equation (2.2). Using the properties of the
binomial thinning operator, the following is derived:

Zt,n =
n∑

k=0

ρk ◦εt−ks
d
= εt+

n−1∑
k=0

ρk+1 ◦εt−(k+1)s = εt+ρ◦
(n−1∑

k=0

ρk ◦εt−s−kz

)
= ρ◦Zt,n−1+εt,

taking the limit in probability as n → ∞ the equality Zt
d
= ρ ◦Zt + εt is obtained, that is

the distribution of Zt is a stationary marginal distribution to Equation (2.2).
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