On the existence of solutions for a sixth-order boundary value problem

Document Type : Original Paper

Authors

Department of Mathematics, Faculty of Basic Sciences, Gonbad Kavous University, Gonbad Kavous, Iran

Abstract

In this paper, by employing the variational method, we show that a boundary value problem of sixth order has infinitely many solutions. In fact, via a critical point theorem, we will present sufficient conditions such that the problem has a sequence of solutions in a suitable function space. Specific cases and an examples of results are also stated.

Keywords

Main Subjects


[1] Abdolrazaghi, F., Razani, A. and Mirzaei, R., 2020. Multiple weak solutions for a kind
of time­dependent equation involving singularity, Filomat, 34(13), pp.4567–4574. doi:
10.2298/FIL2013567A
[2] Bonanno, G., Candito, P. and Oregan, D., 2021. Existence of nontrivial solutions for sixth­order differential equations, Mathematics, 9(16), 1852. doi: 10.3390/math9161852
[3] Bonanno, G. and Livrea, R., 2021. A sequence of positive solutions for sixth­order ordinary nonlinear differential problems, Electron. J. Qual. Theory Differ. Equ., 20, pp.1–17. doi:
10.14232/ejqtde.2021.1.20
[4] Bonanno, G. and Molica Bisci, G., 2009. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009, pp.1–20. doi: 10.1155/2009/670675
[5] Chaparova, J.V., Peletier, L.A. and Tersian, S.A., 2004. Existence and nonexistence of nontrivial solutions of semilinear sixth­order ordinary differential equations, Appl. Math. Lett., 17(10), pp.1207–1212. doi: 10.1016/j.aml.2003.05.014
[6] Ghobadi, A. and Heidarkhani, S., 2023. Variational approach for an elastic beam equation with local nonlinearities, Ann. Polon. Math., 130, pp.201–222. doi: 10.4064/ap220519­20­10
[7] Glatzmaier, G.A., 1985. Numerical simulations of stellar convective dynamics iii: at the base of the convection zone, Astrophys J., 31(1­2), pp.137–150. doi: 10.1080/03091928508219267
[8] Martinez, A. L. M., Pendeza Martinez, C. A., Bressan, G. M., Souza, R. M. and Meier, E. W., 2021.
Multiple solutions for a sixth order boundary value problem, Trends in comput. Appl. Math., 22(1),
pp.1–12. doi: 10.5540/tcam.2021.022.01.00001
[9] Moller, M. and Zinsou, B., 2013. Sixth order diffrential operators with eigenvalue dependent boundary conditions, Appl. Anal. Discret. Math., 7(2), pp.378–389. doi: 10.2298/AADM130608010M
[10] Shokooh, S., 2023. Existence of solutions for a sixth­order nonlinear equation, Rend. Circ. Mat.
Palermo(2), 72, pp.4251–4271. doi: 10.1007/s12215­023­00901­8
[11] Shokooh, S., 2023. Variational techniques for a system of sturm­liouville equations, J. Elliptic
Parabol. Equ., 9, pp.595–610. doi: 10.1007/s41808­023­00217­9
[12] Shokooh, S., 2020. On a model of nonlinear differential equation with variable exponent
by variational method, Journal of Advanced Mathmatical Modeling, 10(2), pp.453–472. doi:
10.22055/JAMM.2020.31804.1784
[13] Xia, M., Zhang, X., Kang, D. and Liu, C., 2022. Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity, AIMS Mathematics, 7(1), pp.579–605. doi:10.3934/math.2022037