[1] Afshari, M., 2017. Nonlinear wavelet shrinkage estimator of nonparametric regularity regression function via crossvalidation with simulation study. International Journal of Wavelets,Multiresolution and Information Processing, 33(6), pp.116. doi: 10.1142/S0219691317500576
[2] Antoniadis, A., Gregoire, G. and Nason, G., 1999. Density and hazard rate estimation for rightcensored data by using wavelet methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(1), pp.6384. doi:10.1111/14679868.00163
[3] Chaubey, Y.P., Doosti, H. and Rao, B.P., 2008. Wavelet based estimation of the derivatives of a density for a negatively associated process. Journal of Statistical Theory and Practice, 2(3), pp.453463. doi: 10.1080/15598608.2008.10411886
[4] Chung, Y. and Chansoo, K., 1997. Simultaneous estimation of the multivariate normal mean
under balanced loss function. Comm. Statist. Theory Methods, 26(7), pp.15991611. doi:
10.1080/03610929708832003
[5] Donoho, D.L. and Johnstone, I.M., 1994. Ideal spatial adaptation by wavelet shrinkage. biometrika, 81(3), pp.425455. doi: 10.2307/2337118
[6] Donoho, D.L. and Johnstone, I.M., 1995. Adapting to unknown smoothness via wavelet shrinkage. Journal of the american statistical association,90(432), pp.12001224. doi: 10.2307/2291512
[7] Donoho, D.L., 1995. Denoising by soft thresholding. IEEE Transection on Information Theory, 41(3), pp.613627. doi: 10.1109/18.382009
[8] Doosti, H., Niroomand, H.A. and Afshari, M., 2006. Wavelet Based Estimation of the Derivatives of a Density for a DiscreteTime Stochastic Process: Lp Losses. Journal of Sciences, Islamic Republic of Iran, 17(1), pp.7581.
[9] Fourdrinier, D. and Strawderman, W.E., 2015.Robust minimax Stein estimation under invariant databased loss for spherically and elliptically symmetric distributions. Metrika, 78(4), pp.461484. doi: 10.1007/s001840140512x
[10] Ghosh, M. and Shieh, G., 1991. Empirical Bayes Minimax Estimators of Matrix Normal Means.
Journal of Multivariate Analysis, 38, pp.306318. doi: 10.1016/0047259X(91)900487
[11] Gupta, A.K. and Nagar, D.K., 2000. Matrix variate distribution, Chapman & Hall/CRC, p. 384. doi: 10.1201/9780203749289
[12] Hamidieh, K., 2018. A datadriven statistical model for predicting the critical temperature of a superconductor. Computational Materials Science, 154, pp.346354. doi: 10.1016/j.comatsci.2018.07.052
[13] Hall, P. and Patil, P., 1995. Formulae for mean integrated squared error of nonlinear waveletbased density estimators. The Annals of Statistics, 23(3), pp.905928. doi: 10.1214/aos/1176324628
[14] Huang, S.Y., 2002. On a Bayesian aspect for soft wavelet shrinkage estimation under an asymmetric linex loss. Statistics and Probability Letters, 56, pp.171175. doi: 10.1016/S01677152(01)00181X
[15] Karamikabir, H. and Afshari, M., 2019. Wavelet shrinkage generalized Bayes estimation for elliptical distribution parameters under LINEX loss. International journal of Wavelets Multiresolution and Information Processing,17(3), pp.649669. doi: 10.1142/S0219691319500097
[16] Karamikabir, H., Afshari, M. and Lak, F., 2021. Wavelet threshold based on Stein’s unbiased riske stimators of restricted location parameter in multivariate normal. journal of Applied Statistics, 48(10), pp.17121729. doi: 10.1080/02664763.202001772209
[17] Karamikabir, H. and Afshari, M., 2020. Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balancetype loss: Minimaxity and admissibility. Multivariate Analysis, 177(c), 104853. doi: 10.1016/j.jmva.2019.104583
[18] Karamikabir, H. and Afshari, M., 2021. New wavelet thresholds of elliptical distributions under the balance loss. Statistica sinica, 31(4), pp.18291852. doi: 10.5705/ss.202019.0339
[19] Karamikabir, H., Asghari, A.N. and Salimi, A., 2022. Soft thresholding wavelet shrinkage estimation for mean matrix of matrix variate normal distribution: low and high dimensional. Soft Computing, pp.116. doi: 10.1007/s0050002207005y
[20] Karamikabir, H. and Afshari, M., 2022. Wavelet shrikage generalized bayes estimation for multivariate normal distribution mean vectors with unknown covariance matrix under balanced linex loss. Thoeretical Statistics, 45(1), pp. 107123. doi: 10.15446/rce.v45n1.92037
[21] Kerkyacharian, G. and Picard, D., 1992. Density estimation in besov spaces. Statistics and Probability Letters, 13(1), pp.1524. doi: 10.1016/01677152(92)90231S
[22] Konno, Y., 1990. Families of minimax estimators of matrix of normal means with unknown covariance matrix. J.Japan.Statist.Soc, 20(2), pp.191201. doi: 10.11329/jjss1970.20.191
[23] Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,11(7), pp.674693. doi: 10.1109/34.192463
[24] Meyer, Y., 1992. Ondelettes, filtres miroirs en quadrature et traitement numerique de l’image. Cambridge University Press, english translation, p. 218. doi: 10.1007/BFb0083510
[25] Petersen, K.B. and Pedersen, M.S., 2012. The matrix cookbook. Technical University of Denmark, p.510.
[26] Stein, M.C., 1981. Estimation of the Mean of a Multivariate Normal Distribution. The Annals of
Statistics, 9(6), pp.11351151. doi: 10.1214/aos/1176345632
[27] Torehzadeh, S. and Arashi, M., 2014. A note on shrinkage wavelet estimation in Bayesian analysis. Statistics and Probability Letters, 84. pp.231234. doi: 10.1016/j.spl.2013.10.006
[28] Tsukuma, H., 2009. Generalized bayes minimax estimation of the normal mean matrix with unknown covariance matrix. Multivariate Analysis, 100, pp.22962304. doi: 10.1016/j.jmva.2009.04.009
[29] Vidakovic, B., 2009. Statistical Modeling by Wavelets. 2nd Ed., Wiley Series in Probability and
Statistics. Wiley Interscience, p.382. doi: 10.1002/9780470317020
[30] Zinodiny, S., Rezaie, S. and Nadarajah, S., 2017. Bayes minimax estimation of the mean matrix of matrixvariate normal distribution under balanced loss function. Statistics and Probability Letters, 125, pp.110120. doi: 10.1016/j.spl.2017.02.003
[31] Zinodiny, S., Rezaie, S. and Nadarajah, S., 2016. Minimax estimation of the mean matrixvariate Normal Distribuion. Probability and Mathematical Statistics, 36(2), pp.187200. doi: 10.6092/issn.19732201/6956