[۱ [عباسی، ابراهیم، نصراصفهانی، سپیده و خلیل پور، کمال، ۱۴۰۰ .عملگر استویچ شارما از فضای بسوف به فضای زیگموند. مجله مدلسازی
doi:۱۹۳۰ .۳۷۳۶۹ .۲۰۲۱/jamm. ۲۲۰۵۵ .۱۰ .۵۸۴ ‐ ۵۷۳ .صص)، ۱۱)۳ ،ریاضی پیشرفته
[۲ [نصراصفهانی، سپیده، حسنلو، مصطفی و عباسی، ابراهیم، ۱۴۰۱ .اندازه کارلسون و انواع عملگرهای ترکیبی روی فضاهای از نوع بسوف
doi:۱۹۷۴ .۳۸۹۱۸ .۲۰۲۲/jamm. ۲۲۰۵۵ .۱۰ .۱۲ ‐ ۱ .صص)، ۱۲)۱ ،ریاضی پیشرفته مدلسازی مجله. مقدار بردار دار وزن
[3] Li, S., Abbasi, E. and Vaezi, H., 2020. Weighted composition operators from Blochtype spaces to nth weightedtype spaces. Annales Polonici Mathematici, 124, pp. 903107. doi.org/10.4064/ap18111934
[4] Abbasi, E., Li, S. and Vaezi, H., 2020. Weighted composition operators from the Bloch space to nthweightedtype, Turkish Journal of Mathematics, 44(1), pp. 108117. doi.org/10.3906/mat190734
[5] Abbasi, E. and Hassanlou, M., 2024. Generalized StevićSharma type operators on spaces of fractional Cauchy transforms. Mediterr. J. Math., 21(1), pp. 40. doi.org/10.1007/s0000902302583z
[6] Allen, R. F. and Colonna, F., 2009. Isometries and spectra of multiplication operators on the Bloch space. Bulletin of the Australian Mathematical Society, 79, pp. 147160.
doi:10.1017/S0004972708001196
[7] Allen, R. F. Heller, K. C. and Pons, M. A., 2014. Isometric composition operators on the analytic Besov spaces. Journal of Mathematical Analysis and Applications, 414 (1), pp. 414–423.
doi.org/10.1016/j.jmaa.2013.12.053
[8] Colonna, F., 2005. Characterisation of the isometric composition operators on the Bloch spaces. Bull. Austral. Math. Soc., 72, pp. 283–290. doi.org/10.1017/S0004972700035073
[9] Choa, J. S. and Kim, H. O., 2001. Composition operators from the space of Cauchy
transforms into its Hardytype subspaces. Rocky Mountain J. Math., 31(1), pp. 95–113.
http://www.jstor.org/stable/44238557.
[10] Cima, J. A., Matheson, A. and Ross, W. T., 2004. The Backward Shift on the Space of Cauchy
Transforms. Proc. Amer. Math. Soc., 132 (3), pp. 745–54. S 00029939(03)07103X
[11] Cima, J. A., Matheson, A. and Ross, W. T., 2006. The Cauchy transform. Mathematical Surveys and Monographs. 125. Providence, RI: American Mathematical Society.
[12] Dai, J., 2019. Topological structure of the set of composition operators on the weighted
Bergman space. Journal of Mathematical Analysis and Applications, 473(4), pp. 444–467.
doi.org/10.1016/j.jmaa.2018.12.060
[13] ElGebeily, M. and Wolfe, J., 1985. Isometries of the disc algebra. Proc. Amer. Math. Soc., 93(4), pp. 697–702. doi.org/10.2307/2045547
[14] Forelli, F., 1964. The isometries of Hp. Can. J. Math., 16, pp. 721–728. doi.org/10.4153/CJM19640683
[15] Guo, X. and Wang, M., 2020. Linear combination of composition operators on Cauchy transform type spaces. Science China Mathematics, 50(12), pp. 1733–1744. doi:10.1360/SSM20200160
[16] Hibschweiler, R. A. and MacGregor, T. H., 2006. Fractional Cauchy Transforms. Chapman and Hall. Boca Raton, FL: CRC.
[17] Hibschweiler, R. A., 2012. Composition operators on spaces of fractional Cauchy transforms. Complex Analysis and Operator Theory, 6(4). pp. 897–911. doi.org/10.1007/s1178501001043
[18] Hornor, W. and Jamison, J., 2001. Isometries of some Banach space of analytic functions. Integral Equations and Operator Theory, 41, pp. 410–425. doi.org/10.1007/BF01202102
[19] Hosokawa, T. and Ohno, S., 2006. Topological structures of the sets of composition operators on the Bloch spaces. J. Math. Anal. Appl., 314. pp. 736–748. doi:10.1016/j.jmaa.2005.04.080
[20] Maccler, B., Ohno, S. and Zhao, R., 2001. Topological structure of the space of composition operators on H∞. Integral Equations and Operator Theory, 40(4), pp. 481494. doi.org/10.1007/BF01198142
[21] MacGregor, T. H., 1999. Fractional Cauchy transforms. Journal of Computational and Applied Mathematics, 105, pp. 93–108. doi.org/10.1016/S03770427(99)000229
[22] Saukko, E., 2011. Difference of composition operators between standard weighted Bergman spaces. J. Math. Anal. Appl., 381, pp. 789–798. doi.org/10.1016/j.jmaa.2011.03.058
[23] Shapiro, J. and Sundberg, C., 1990. Isolation amongst the composition operators. Pac. J. Math., 145(1). 117–152. doi: 10.2140/pjm.1990.145.117
[24] Sharma, A. Krishan, R. and Subhadarsini, E., 2017. Difference of composition operators from the space of Cauchy integral transforms to Blochtype spaces. Integral Transforms and Special Functions, 28(2), pp. 145–155. doi.org/10.1080/10652469.2016.1255608
[25] Shi, Y. and Li, S., 2017. Essential norm of the differences of composition operators on the Bloch space. Math. Inequal. Appl., 20(2), pp. 543–555. doi: 10.7153/mia2037
[26] Shi, Y., Li, S. and Zhu, X., 2021. Difference of weighted composition operators from H∞ to the
Bloch space. Bullet. Iran. Math. Soc., 47(4). pp. 12451259. doi.org/10.1007/s4198002000439w
[27] Shi, Y., Qu, D. and Li, S., 2022. Difference of composition operators on weighted Bergman spaces with doubling weights. Comput. Meth. Funct. Theory, 22(2). pp. 287305. doi.org/10.1007/s40315021003829
[28] Shi, Y. and Li, S., 2024. Difference of compositiondifferentiation operators from Hardy spaces
to weighted Bergman spaces via harmonic analysis. Bulle. des Sci. Math., 191, pp. 103383.
doi.org/10.1016/j.bulsci.2024.103383
[29] Stevic, S., 2024. Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weightedtype space on the unit disk. Math. Meth. the Appl. Scie., 47, pp. 38933902. doi: 10.1002/mma.9681
[30] Wang, M. and Guo, X., 2018. Difference of differentiation composition operators on the
fractional Cauchy transforms spaces. Num. Func. Anal. Optim., 39. pp. 1291–1315. doi:
10.1080/01630563.2018.1477798
[31] Zhao, R., 2010. Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc., 138(7), pp. 25372546. S 00029939(09)099614