Analysis of an $SIR$ Model with Nonlinear Incidence Rate‏ and the ‎Full‎ Impact of‎‏‎ Vaccination

Document Type : Original Paper

Authors

Faculty of Mathematics, Department of Mathematical Sciences, University of Kashan, Kashan, Iran

Abstract

‎In this article‎, ‎we present an $SIR$ model with a general nonlinear incidence rate‎, ‎assuming a $100\%$ effective vaccine‎.
‎This system has a disease-free equilibrium point‎, ‎corresponding to which a basic reproduction number $\mathscr{R}_0$‎​ ‎is obtained‎. ‎For $\mathscr{R}_0 > 1$‎, ‎the system will also have an endemic equilibrium point‎. ‎We study the local and global stability of these equilibrium points‎. ‎Considering the change in the stability status of the equilibrium points with the change of one of the parameters‎, ‎we will examine the existence of a transcritical bifurcation‎. ‎Additionally‎, ‎we calculate the sensitivity index of $\mathscr{R}_0$​‎, ‎which essentially determines the susceptibility of the system to the existing parameters‎. ‎Finally‎, ‎we examine the obtained results with numerical examples‎.

Keywords

Main Subjects


[1] Karaji, P. T., Nyamoradi, N. and Ahmad, B. (2023). Stability and bifurcations of an SIR model with a nonlinear incidence rate. Mathematical Methods in the Applied Sciences, 46(9), 10850­10866. doi:10.1002/mma.9155
[2] Khan, T., Ullah, R. and Zaman, G. (2023). Hepatitis B virus transmission via epidemic model. In
Advances in Epidemiological Modeling and Control of Viruses (pp. 29­54). doi: 10.1016/B978­0­32­
399557­3.00007­7
[3] Li, J., Teng, Z., Wang, G., Zhang, L. and Hu, C. (2017). Stability and bifurcation analysis of an SIR
epidemic model with logistic growth and saturated treatment. Chaos, Solitons and Fractals, 99, 63­71. doi:10.1016/j.chaos.2017.03.047
[4] Liu, W. M., Levin, S. A. and Iwasa, Y. (1986). Influence of nonlinear incidence rates upon
the behavior of SIRS epidemiological models. Journal of Mathematical Biology, 23, 187–204.
doi:10.1007/BF00276956
[5] Lotfi, E. M., Maziane, M., Hattaf, K. and Yousfi, N. (2014). Partial differential equations of an epidemic model with spatial diffusion. International Journal of Partial Differential Equations, 2014(1),186437. doi: 10.1155/2014/186437
[6] Martcheva, M., (2015). An introduction to mathematical epidemiology (Vol. 61). doi: 10.1007/978­1­4899­7612­3.
[7] Perko, L. (2013). Differential equations and dynamical systems(Vol. 7). Springer Science and Business Media. doi: 10.1007/978­1­4612­0340­0
[8] Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115 (772), 700­721. doi: 10.1098/rspa.1927.0118
[9] Zhang, F., Cui, W., Dai, Y. and Zhao, Y. (2022). Bifurcations of an SIRS epidemic model with a
general saturated incidence rate. Mathematical Biosciences and Engineering, 19(11), 10710­10730.
doi: 10.3934/mbe.2022501