[1] Anderson, F.W., and Fuller, K.R., 1992. Rings and Categories of Modules. Graduate Texts in mathematics, 13 Springer, Berlin. doi:10.1007/978-1-4612-4418-9
[2] Bilhan, G. and Smith, P.F., 2006. Short modules and almost Noetherian modules. Math. Scand.,
12-18. doi:10.7146/math.scand.a-14980
[3] Dauns, J. and Zhou, Y., 2006. Classes of modules. Chapman and Hall, doi:10.1201/9781420011593
4] Davoudian, M., Karamzadeh, O.A.S. and Shirali, N., 2014. On α-short modules. Math. Scand, 114(1), 26-37. doi:10.7146/math.scand.a-16638
[5] Davoudian, M., Halali, A. and Shirali, N., 2018. On α-coatomic modules. Far East J. Math. Sci.,
(FJMS), 103(9), 1457-1475. doi:10.17654/MS103091457
[6] Davoudian, M. and Shirali, N., 2018. On α-tall modules. Bull. Malays. Math. Sci. Soc, 41, 1739-1747. doi:10.1007/s40840-016-0422-3
[7] Gordon, R. and Robson, J.C., 1973. Krull Dimension. Vol. 133, American Mathematical Soc.
[8] Javdannezhad, S.M. and Shirali, N., 2018. The Krull dimension of certain semiprime modules versus their α-shortness. Mediterr. J. Math., 15(3), 116. doi:10.1007/s00009-018-1163-3
[9] Javdannezhad, S.M., Maschizadeh, M. and Shirali, N., 2024. On iso-DICC modules. Comm. Algebra, doi:10.1080/00927872.2024.2372374
[10] Javdannezhad, S.M., Shirali, N., Shirali, M. and Mousavinasab, S. F., 2022. On
α-parallel short modules. Journal of Advanced Mathematical Modeling, 12(3), 437-447.
doi:10.22055/jamm.2022.41194.2053
[11] Karamzadeh, O.A.S., 1974. Noetherian dimension. Ph.D. thesis, Exeter.
[12] Karamzadeh, O.A.S. and Sajedinejad, A.R., 2001. Atomic modules. Comm. Algebra, 29(7), 2757-2773. doi:10.1081/AGB-4985
[13] Karamzadeh, O.A.S. and Shirali, N., 2004. On the countability of Noetherian dimension of modules. Comm. Algebra, 32(10), 4073-4083. doi:10.1081/AGB-200028238
[14] Krause, G., 1972. On the Krull-dimension of left Noetherian Rings. J. Algebra, 23, 88-99.
[15] Kirby, D., 1990. Dimension and length for Artinian modules. Quart. J. Math., 41(4), 419-429.
doi:10.1093/qmath/41.4.419
[16] Lemonnier, B., 1978. Dimension de Krull et codeviation, Application au theorem dEakin. ´ Comm. Algebra, 6, 1647-1665. doi:10.1080/00927877808822313
[17] Rentschler, R. and Gabriel, P., 1967. Sur la dimension des anneaux et ensembles ordonn´es. CR Acad.Sci. Paris, 265(2), 712-715.
[18] Shirali, N., 2023. The Noetherian dimension of modules versus their α-small shortness. Algebraic Structures and Their Applications, 10(1), 1-15. doi:10.22034/as.2023.2699
[19] Shirali, N., Kavoosi Ghafi, H. and Javdannezhad, S.M., 2024. On type Krull dimension of modules. Journal of Algebraic Systems, doi:10.22044/jas.2024.14020.1789
[20] Shirali, M. and Shirali, N., 2022. On parallel Krull dimension of modules. Comm. Algebra 50(12), 284–5295. doi:10.1080/00927872.2022.2084549
[21] Shirali, N. and Shirali, M., 2024. Non-parallel graph of submodules of a module. Journal of Advanced Mathematical Modeling, 13(4), 108-117. doi:10.22055/jamm.2024.45266.2225