Ideals, grills, primals and filters from the categorical viewpoint

Document Type : Original Paper

Authors

1 Department of Mathematics and Computer Sciences Sirjan University of Technology, Sirjan, Iran

2 faculty of payamenoor university

Abstract

In this paper, we study the categorical structures of the concepts of ideal, grill, primal, and filter, which play a fundamental and important role in the study of topology spaces. Some researchers have shown that all these concepts are equivalent, regardless of the categorical viewpoint. Here, we define the homomorphisms and so the category of each of these concepts and then show that all of them are isomorphic, except for the category of filters. As an important result, it has been shown that these categories are topological, except for the category of filters. Consequently, they are complete and cocomplete, but they are not algebraic. Thus, many topological properties can be easily expressed and analyzed in terms of each of these concepts. Finally, some categorical structures of ideals are described.

Keywords

Main Subjects


[1] Acharjee, S., O¨zkoc, M. and Issaka, F.Y., 2022. Primal topological spaces. arXiv preprint.
https://doi.org/1048550/arXiv.2209.12676
[2] Adamek, J., Herrlich, H. and Strecker, G.E., 1990. Abstract and concrete categories. John Wiley and Sons Inc., New York.
[3] Azzam, A.A., Hussein, S.S. and Saber Osman, H., 2020. Compactness of topological spaces with
grills. Ital. J. Pure Appl. Math. 44, pp.198–207.
[4] Beattie, R. and Butzmann, H., 2002. Convergence structure and applications to Functional analysis. klwwer acod. Pub., Dordrecht.
[5] Boroojerdian, N. and Talabeigi, A., 2017. One­point λ­compactification via grills. Iran. J. Sci. Technol. Trans. A Sci., 41, pp.909–912. https://doi.org/10.1007/s40995­017­0314­x
[6] Bourbaki, N., 1940. Topologie generale. Chapitre 1 et 2. Actualites Sci. Ind., 858
[7] Cartan, H., 1937. Theorie des filters. C. R. Math. Acad. Sci. Paris, 205, pp.595­598.
[8] Cartan, H., 1937. Filtres et ultrafiltres. C. R. Math. Acad. Sci. Paris, 205, pp.777­779.
[9] Chattopadhyay, K.C. and Thron, W.J., 1977. Extensions of closure spaces. Canad. J. Math., 29(6),
pp.1277­1286. https://doi.org/10.4153/CJM­1977­127­6
[10] Chattopadhyay, K.C., Njastad, O. and Thron, W.J., 1983. Merotopic Spaces and extensions of closure spaces. Canad. J. Math., 35, pp.613­629. https://doi.org/10.4153/CJM­1983­035­6
[11] Choquet, G., 1947. Sur les notions de filter et grille. C. R. Math. Acad. Sci. Paris, 224, pp.171­173.
[12] Hosny, R.A., 2012. δ­sets with grill. Int. Math. Forum, 7(43), pp.2107­2113.
[13] Jankovic, D. and Hamlett, T.R., 1990. New topologies from old via ideals. Amer. Math. Monthly, 
97(4), pp.295­310. https://doi.org/10.1080/00029890.1990.11995593
[14] Kandil, A., El­Sheikh , S.A., Abdelhakem, M. and Shawqi Hazza, A., 2015. On ideals and grills in
topological spaces. South Asian Journal of Mathematics, 5(6), pp.233­238.
[15] Kowalsky, H.J., 1961. Topologische Raume. Basel­Stuttgart.
[16] Kuratowski, K., 1966. Topology: Volume I. Elsevier. https://doi.org/10.1016/C2013­0­11022­7
[17] Modak, S., 2013. Topology on grill­filter space and continuity. Bol. Soc. Parana. Mat., 31(2), pp.219­230. doi: 10.5269/bspm.v31i2.16603
[18] Modak, S., 2013. Grill­filter space. J. Indian Math. Soc., 80(3­4), pp.313­320.
[19] Mukherjee, M.N. and Debray, A., 1998. On H­closed spaces and grills. An. Stiint. Univ. AL. I. Cuza Iasi. Mat.(N.S.), 44, pp.1­25.
[20] Nasef, A.A. and Azzam, A.A., 2016. Some topological operators via grills. J. Linear. Topological.
Algebra., 5(3), pp.199­204. dor: 20.1001.1.22520201.2016.05.03.5.8
[21] Root, R., 1914. Iterated limits in general analysis. Amer. J. Math., 36, pp.79­134.
https://doi.org/10.2307/2370519
[22] Roy, B. and Mukherjee, M.N., 2007. On a typical topology induced by a grill. Soochow J. Math., 33(4), pp.771­786.
[23] Roy, B. and Mukherjee, M.N., 2009. Concerning topologies induced by principal grills. An. Stiint. Univ. AL. I. Cuza Iasi. Mat. (N.S.), 55(2), pp.285­294.
[24] Roy, B. and Mukherjee, M.N., 2007. On a type of compactness via grills, Math. Vesnik, 59(3), pp.113­ -120.
[25] Roy, B., Mukherjee, M.N. and Ghosh, S.K., 2008. On a new operator based on a grill and its associated topology. Arab J. Math. Sci., 14(1), pp.21­32.
[26] Talabeigi, A., 2016. On the Tychonoff’s type theorem via grills. Bull. Iranian Math. Soc., 42(1),
pp.37­41.
[27] Talabeigi, A. and Talabeigi, M., 2022. An approach to change the topology of a topological space.Sahand Commun. Math. Anal., 19(3), pp.55­63.
https://doi.org/10.22130/scma.2022.132038.842
[28] Talabeigi, A., 2021. An approach to change the topology of a topological space with the
help of its closed sets in the presence of grills. J. Mahani Math. Res., 10(2), pp.9­19. doi:10.22103/jmmrc.2021.17094.1132
[29] Thangamariappan, R. and Renukadevi, V., 2015. Topology generated by cluster systems. Math. Vesnik, 67(3), pp.174­184.
[30] Thron, W.J., 1973. Proximity structures and grills. Math. Ann., 206, pp.35­62.
https://doi.org/10.1007/BF01431527