[1] Bruce, J. W. and Giblin, P. J., 1992. Curves and Singularities. Cambridge University Press.
DOI:10.1017/CBO9781139172615
[2] Dias, F. S., 2015. Projection of generic 1 and 2-parameter families of space curves. Hokkaido Math. J., 44, pp. 221–250. DOI: 10.14492/hokmj/1470053292
[3] Encheva, R.P. and Georgiev, G.H., 2009. Similar Frenet Curves. Results Math., 55, pp. 359-372.
DOI:10.1007/s00025-009-0407-8
[4] Giblin, P. J. and Warder, J. P., 2014. Evolving Evolutoids. Am. Math. Mon., 121, pp. 871-889.
DOI:10.4169/amer.math.monthly.121.10.871
[5] Gray, A., Abbena, E. and Salamon, S., 2006. Modern Differential Geometry of Curves and Surfaces with Mathematica. Third edition. Studies in Advanced Mathematics. Chapman and Hall/CRC. Boca Raton FL.
[6] Lewis, W. J., 2016. Mathematical model of a momentless arch. Proc. R. Soc. Lond. A, 472, pp. 1-14. DOI: 10.1098/rspa.2016.0019
[7] Liu, Y. Hung, C. and Chang, Y. , 2010. Study on involute of circle with variable radii in a scroll
compressor. Mech. Mach. Theory, 45, pp. 1520-1536. DOI:10.1016/j.mechmachtheory.2010.07.001
[8] Radzevich, S. P., 2018. Theory of Gearing: Kinematics, Geometry, and Synthesis. Second Edition, CRC Press. Boca Raton FL. DOI: 10.1201/9781003311744
[9] Uribe-Vargas, R., 2005. On vertices, focal curvatures and differential geometry of space curves. Bull. Braz. Math. Soc., 36, pp. 285-307. DOI: 10.1007/s00574-005-0040-4
[10] Nuno Ballesteros, J. J. and Romero-Fuster, M. C., 1992. Global bitangency properties of generic closed space curves. Math. Proc. Camb. Soc., 112, pp. 519–526. DOI: 10.1017/S030500410007119X
[11] Nuno Ballesteros, J. J. and Romero-Fuster, M. C., 1992. Generic 1-parameter families of closed
space curves. Contemp. Math., 161, pp. 259–270.
[12] Wang, Y., Chang, Y. and Liu, H., 2021. Generalized evolutes of planar curves. Int. J. Geom. Methods Mod. Phys., 18, pp. 2150222. DOI: 10.1142/S0219887821502224